No Arabic abstract
Cross-lingual word embeddings (CLWE) underlie many multilingual natural language processing systems, often through orthogonal transformations of pre-trained monolingual embeddings. However, orthogonal mapping only works on language pairs whose embeddings are naturally isomorphic. For non-isomorphic pairs, our method (Iterative Normalization) transforms monolingual embeddings to make orthogonal alignment easier by simultaneously enforcing that (1) individual word vectors are unit length, and (2) each languages average vector is zero. Iterative Normalization consistently improves word translation accuracy of three CLWE methods, with the largest improvement observed on English-Japanese (from 2% to 44% test accuracy).
Cross-lingual word embeddings (CLWE) have been proven useful in many cross-lingual tasks. However, most existing approaches to learn CLWE including the ones with contextual embeddings are sense agnostic. In this work, we propose a novel framework to align contextual embeddings at the sense level by leveraging cross-lingual signal from bilingual dictionaries only. We operationalize our framework by first proposing a novel sense-aware cross entropy loss to model word senses explicitly. The monolingual ELMo and BERT models pretrained with our sense-aware cross entropy loss demonstrate significant performance improvement for word sense disambiguation tasks. We then propose a sense alignment objective on top of the sense-aware cross entropy loss for cross-lingual model pretraining, and pretrain cross-lingual models for several language pairs (English to German/Spanish/Japanese/Chinese). Compared with the best baseline results, our cross-lingual models achieve 0.52%, 2.09% and 1.29% average performance improvements on zero-shot cross-lingual NER, sentiment classification and XNLI tasks, respectively.
We introduce a novel method for multilingual transfer that utilizes deep contextual embeddings, pretrained in an unsupervised fashion. While contextual embeddings have been shown to yield richer representations of meaning compared to their static counterparts, aligning them poses a challenge due to their dynamic nature. To this end, we construct context-independent variants of the original monolingual spaces and utilize their mapping to derive an alignment for the context-dependent spaces. This mapping readily supports processing of a target language, improving transfer by context-aware embeddings. Our experimental results demonstrate the effectiveness of this approach for zero-shot and few-shot learning of dependency parsing. Specifically, our method consistently outperforms the previous state-of-the-art on 6 tested languages, yielding an improvement of 6.8 LAS points on average.
Document alignment aims to identify pairs of documents in two distinct languages that are of comparable content or translations of each other. Such aligned data can be used for a variety of NLP tasks from training cross-lingual representations to mining parallel data for machine translation. In this paper we develop an unsupervised scoring function that leverages cross-lingual sentence embeddings to compute the semantic distance between documents in different languages. These semantic distances are then used to guide a document alignment algorithm to properly pair cross-lingual web documents across a variety of low, mid, and high-resource language pairs. Recognizing that our proposed scoring function and other state of the art methods are computationally intractable for long web documents, we utilize a more tractable greedy algorithm that performs comparably. We experimentally demonstrate that our distance metric performs better alignment than current baselines outperforming them by 7% on high-resource language pairs, 15% on mid-resource language pairs, and 22% on low-resource language pairs.
We propose a new approach for learning contextualised cross-lingual word embeddings based only on a small parallel corpus (e.g. a few hundred sentence pairs). Our method obtains word embeddings via an LSTM-based encoder-decoder model that performs bidirectional translation and reconstruction of the input sentence. Through sharing model parameters among different languages, our model jointly trains the word embeddings in a common multilingual space. We also propose a simple method to combine word and subword embeddings to make use of orthographic similarities across different languages. We base our experiments on real-world data from endangered languages, namely Yongning Na, Shipibo-Konibo and Griko. Our experiments on bilingual lexicon induction and word alignment tasks show that our model outperforms existing methods by a large margin for most language pairs. These results demonstrate that, contrary to common belief, an encoder-decoder translation model is beneficial for learning cross-lingual representations, even in extremely low-resource scenarios.
Entity alignment is the task of finding entities in two knowledge bases (KBs) that represent the same real-world object. When facing KBs in different natural languages, conventional cross-lingual entity alignment methods rely on machine translation to eliminate the language barriers. These approaches often suffer from the uneven quality of translations between languages. While recent embedding-based techniques encode entities and relationships in KBs and do not need machine translation for cross-lingual entity alignment, a significant number of attributes remain largely unexplored. In this paper, we propose a joint attribute-preserving embedding model for cross-lingual entity alignment. It jointly embeds the structures of two KBs into a unified vector space and further refines it by leveraging attribute correlations in the KBs. Our experimental results on real-world datasets show that this approach significantly outperforms the state-of-the-art embedding approaches for cross-lingual entity alignment and could be complemented with methods based on machine translation.