No Arabic abstract
An improved formula is proposed for field ionization rate covering tunnel and barrier suppression regime. In contrast to the previous formula obtained recently in [I. Yu. Kostyukov and A. A. Golovanov, Phys. Rev. A 98, 043407 (2018)], it more accurately describes the transitional regime (between the tunnel regime and the barrier suppression regime). In the proposed approximation, the rate is mainly governed by two parameters: by the atom ionization potentials and by the external electric field, which makes it perfectly suitable for particle-in-cell (PIC) codes dedicated to modeling of intense laser-matter interactions.
When using an electromagnetic particle-in-cell (EM-PIC) code to simulate a relativistically drifting plasma, a violent numerical instability known as the numerical Cerenkov instability (NCI) occurs. The NCI is due to the unphysical coupling of electromagnetic waves on a grid to wave-particle resonances, including aliased resonances, i.e., $omega + 2pimu/Delta t=(k_1+ 2pi u_1/Delta x_1)v_0$, where $mu$ and $ u_1$ refer to the time and space aliases and the plasma is drifting relativistically at velocity $v_0$ in the $hat{1}$-direction. Recent studies have shown that an EM-PIC code which uses a spectral field solver and a low pass filter can eliminate the fastest growing modes of the NCI. Based on these studies a new spectral PIC code for studying laser wakefield acceleration (LWFA) in the Lorentz boosted frame was developed. However, we show that for parameters of relevance for LWFA simulations in the boosted frame, a relativistically drifting plasma is susceptible to a host of additional unstable modes with lower growth rates, and that these modes appear when the fastest growing unstable modes are filtered out. We show that these modes are most easily identified as the coupling between modes which are purely transverse (EM) and purely longitudinal (Langmuir) in the rest frame of the plasma for specific time and space aliases. We rewrite the dispersion relation of the drifting plasma for a general field solver and obtain analytic expressions for the location and growth rate for each unstable mode, i.e, for each time and space aliased resonances. We show for the spectral solver that when the fastest growing mode is eliminated a new mode at the fundamental resonance ($mu= u_1=0$) can be seen. (Please check the whole abstract in the paper).
An ionization-induced plasma grating can be formed by spatially selective ionization of gases by the interference of two intersecting ultra-short laser pulses. The density modulation of a plasma grating can approach unity since the plasma is produced only where the two pulses constructively interfere and ionization does not occur in destructive interference regions. Such a large density modulation leads to efficient Thomson scattering of a second ultra-short probe pulse once the Bragg condition is satisfied. By measuring the scattering efficiency, it is possible to determine the absolute electron density in the plasma grating and thereby deduce the ionization degree for a given neutral gas density. In this paper, we demonstrate the usefulness of this concept by showing two applications: ionization degree measurement of strong-field ionization of atoms and molecules and characterization of extremely low-density gas jets. The former application is of particular interest for ionization physics studies in dense gases where the collision of the ionized electron with neighboring neutrals may become important-sometimes referred to as many-body ionization, and the latter is useful for plasma-based acceleration that requires extremely low-density plasmas.
Several recent attoclock experiments have investigated the fundamental question of a quantum mechanically induced time delay in tunneling ionization via extremely precise photoelectron momentum spectroscopy. The interpretations of those attoclock experimental results were controversially discussed, because the entanglement of the laser and Coulomb field did not allow for theoretical treatments without undisputed approximations. The method of semiclassical propagation matched with the tunneled wavefunction, the quasistatic Wigner theory, the analytical R-matrix theory, the backpropagation method, and the under-the-barrier recollision theory are the leading conceptual approaches put forward to treat this problem, however, with seemingly conflicting conclusions on the existence of a tunneling time delay. To resolve the contradicting conclusions of the different approaches, we consider a very simple tunneling scenario which is not plagued with complications stemming from the Coulomb potential of the atomic core, avoids consequent controversial approximations and, therefore, allows us to unequivocally identify the origin of the tunneling time delay as well as to confirm it with the backpropagation method being most known for predicting vanishing tunneling time.
A procedure for largely suppressing the numerical Cherenkov instability in finite difference time-domain (FDTD) particle-in-cell (PIC) simulations of cold, relativistic beams is derived, and residual growth rates computed and compared with WARP code simulation results. Sample laser-plasma acceleration simulation output is provided to further validate the new procedure.
The particle-in-cell (PIC) method is widely used to model the self-consistent interaction between discrete particles and electromagnetic fields. It has been successfully applied to problems across plasma physics including plasma based acceleration, inertial confinement fusion, magnetically confined fusion, space physics, astrophysics, high energy density plasmas. In many cases the physics involves how relativistic particles are generated and interact with plasmas. However, when relativistic particles stream across the grid both in vacuum and in plasma there are many numerical issues that may arise which can lead to incorrect physics. We present a detailed analysis of how discretized Maxwell solvers used in PIC codes can lead to numerical errors to the fields that surround particles that move at relativistic speeds across the grid. Expressions for the axial electric field as integrals in k space are presented. Two types of errors to these expressions are identified. The first arises from errors to the numerator of the integrand and leads to unphysical fields that are antisymmetric about the particle. The second arises from errors to the denominator of the integrand and lead to Cerenkov like radiation in vacuum. These fields are not anti-symmetric, extend behind the particle, and cause the particle to accelerate or decelerate depending on the solver and parameters. The unphysical fields are studied in detail for two representative solvers - the Yee solver and the FFT based solver. A solution for eliminating these unphysical fields by modifying the k operator in the axial direction is also presented. Using a customized finite difference solver, this solution was successfully implemented into OSIRIS. Results from the customized solver are also presented. This solution will be useful for a beam of particles that all move in one direction with a small angular divergence.