No Arabic abstract
Although the open-field test has been widely used, its reliability and compatibility are frequently questioned. Although many indicating parameters were introduced for this test, they did not take data distributions into consideration. This oversight may have caused the problems mentioned above. Here, an exploratory approach for the analysis of video records of tests of elderly mice was taken that described the distributions using the least number of parameters. First, the locomotor activity of the animals was separated into two clusters: dash and search. The accelerations found in each of the clusters were distributed normally. The speed and the duration of the clusters exhibited an exponential distribution. Although the exponential model includes a single parameter, an additional parameter that indicated instability of the behaviour was required in many cases for fitting to the data. As this instability parameter exhibited an inverse correlation with speed, the function of the brain that maintained stability would be required for a better performance. According to the distributions, the travel distance, which has been regarded as an important indicator, was not a robust estimator of the animals condition.
Cryo-electron tomography (cryo-ET) is an emerging technology for the 3D visualization of structural organizations and interactions of subcellular components at near-native state and sub-molecular resolution. Tomograms captured by cryo-ET contain heterogeneous structures representing the complex and dynamic subcellular environment. Since the structures are not purified or fluorescently labeled, the spatial organization and interaction between both the known and unknown structures can be studied in their native environment. The rapid advances of cryo-electron tomography (cryo-ET) have generated abundant 3D cellular imaging data. However, the systematic localization, identification, segmentation, and structural recovery of the subcellular components require efficient and accurate large-scale image analysis methods. We introduce AITom, an open-source artificial intelligence platform for cryo-ET researchers. AITom provides many public as well as in-house algorithms for performing cryo-ET data analysis through both the traditional template-based or template-free approach and the deep learning approach. AITom also supports remote interactive analysis. Comprehensive tutorials for each analysis module are provided to guide the user through. We welcome researchers and developers to join this collaborative open-source software development project. Availability: https://github.com/xulabs/aitom
State-dependent Na+ channel blockers are often prescribed to treat cardiac arrhythmias, but many Na+ channel blockers are known to have pro-arrhythmic side effects. While the anti and proarrhythmic potential of a Na+ channel blocker is thought to depend on the characteristics of its rate-dependent block, the mechanisms linking these two attributes are unclear. Furthermore, how specific properties of rate-dependent block arise from the binding kinetics of a particular drug is poorly understood. Here, we examine the rate-dependent effects of the Na+ channel blocker lidocaine by constructing and analyzing a novel drug-channel interaction model. First, we identify the predominant mode of lidocaine binding in a 24 variable Markov model for lidocaine-Na+ channel interaction by Moreno et al. We then develop a novel 3-variable lidocaine-Na+ channel interaction model that incorporates only the predominant mode of drug binding. Our low-dimensional model replicates the extensive voltage-clamp data used to parameterize the Moreno et al. model. Furthermore, the effects of lidocaine on action potential upstroke velocity and conduction velocity in our model are similar to those predicted by the Moreno et al. model. By exploiting the low-dimensionality of our model, we derive an algebraic expression for level of rate-dependent block as a function of pacing frequency, restitution properties, diastolic and plateau potentials, and drug binding rate constants. Our model predicts that the level of rate-dependent block is sensitive to alterations in restitution properties and increases in diastolic potential, but it is insensitive to variations in the shape of the action potential waveform and lidocaine binding rates.
Freely and openly shared low-cost electronic applications, known as open electronics, have sparked a new open-source movement, with much un-tapped potential to advance scientific research. Initially designed to appeal to electronic hobbyists, open electronics have formed a global community of makers and inventors and are increasingly used in science and industry. Here, we review the current benefits of open electronics for scientific research and guide academics to enter this emerging field. We discuss how electronic applications, from the experimental to the theoretical sciences, can help (I) individual researchers by increasing the customization, efficiency, and scalability of experiments, while improving data quantity and quality; (II) scientific institutions by improving access and maintenance of high-end technologies, visibility and interdisciplinary collaboration potential; and (III) the scientific community by improving transparency and reproducibility, helping decouple research capacity from funding, increasing innovation, and improving collaboration potential among researchers and the public. Open electronics are powerful tools to increase creativity, democratization, and reproducibility of research and thus offer practical solutions to overcome significant barriers in science.
In the past decade, digital technologies have started to profoundly influence healthcare systems. Digital self-tracking has facilitated more precise epidemiological studies, and in the field of nutritional epidemiology, mobile apps have the potential to alleviate a significant part of the journaling burden by, for example, allowing users to record their food intake via a simple scan of packaged products barcodes. Such studies thus rely on databases of commercialized products, their barcodes, ingredients, and nutritional values, which are not yet openly available with sufficient geographical and product coverage. In this paper, we present FoodRepo (https://www.foodrepo.org), an open food repository of barcoded food items, whose database is programmatically accessible through an application programming interface (API). Furthermore, an open source license gives the appropriate rights to anyone to share and reuse FoodRepo data, including for commercial purposes. With currently more than 21,000 items available on the Swiss market, our database represents a solid starting point for large-scale studies in the field of digital nutrition, with the aim to lead to a better understanding of the intricate connections between diets and health in general, and metabolic disorders in particular.
Transition from conventional to digital pathology requires a new category of biomedical informatic infrastructure which could facilitate delicate pathological routine. Pathological diagnoses are sensitive to many external factors and is known to be subjective. Only systems that can meet strict requirements in pathology would be able to run along pathological routines and eventually digitized the study area, and the developed platform should comply with existing pathological routines and international standards. Currently, there are a number of available software tools which can perform histopathological tasks including virtual slide viewing, annotating, and basic image analysis, however, none of them can serve as a digital platform for pathology. Here we describe OpenHI2, an enhanced version Open Histopathological Image platform which is capable of supporting all basic pathological tasks and file formats; ready to be deployed in medical institutions on a standard server environment or cloud computing infrastructure. In this paper, we also describe the development decisions for the platform and propose solutions to overcome technical challenges so that OpenHI2 could be used as a platform for histopathological images. Further addition can be made to the platform since each component is modularized and fully documented. OpenHI2 is free, open-source, and available at https://gitlab.com/BioAI/OpenHI.