Observation of spin-orbit excitations and Hunds multiplets in Ca$_2$RuO$_4$


Abstract in English

We use Ru $L_3$-edge (2838.5 eV) resonant inelastic x-ray scattering (RIXS) to quantify the electronic structure of Ca$_2$RuO$_4$, a layered $4d$-electron compound that exhibits a correlation-driven metal-insulator transition and unconventional antiferromagnetism. We observe a series of Ru intra-ionic transitions whose energies and intensities are well described by model calculations. In particular, we find a $rm{J}=0rightarrow 2$ spin-orbit excitation at 320 meV, as well as Hunds-rule driven $rm{S}=1rightarrow 0$ spin-state transitions at 750 and 1000 meV. The energy of these three features uniquely determines the spin-orbit coupling, tetragonal crystal-field energy, and Hunds rule interaction. The parameters inferred from the RIXS spectra are in excellent agreement with the picture of excitonic magnetism that has been devised to explain the collective modes of the antiferromagnetic state. $L_3$-edge RIXS of Ru compounds and other $4d$-electron materials thus enables direct measurements of interactions parameters that are essential for realistic model calculations.

Download