No Arabic abstract
Noise and domain are important aspects of data quality for neural machine translation. Existing research focus separately on domain-data selection, clean-data selection, or their static combination, leaving the dynamic interaction across them not explicitly examined. This paper introduces a co-curricular learning method to compose dynamic domain-data selection with dynamic clean-data selection, for transfer learning across both capabilities. We apply an EM-style optimization procedure to further refine the co-curriculum. Experiment results and analysis with two domains demonstrate the effectiveness of the method and the properties of data scheduled by the co-curriculum.
This paper considers the unsupervised domain adaptation problem for neural machine translation (NMT), where we assume the access to only monolingual text in either the source or target language in the new domain. We propose a cross-lingual data selection method to extract in-domain sentences in the missing language side from a large generic monolingual corpus. Our proposed method trains an adaptive layer on top of multilingual BERT by contrastive learning to align the representation between the source and target language. This then enables the transferability of the domain classifier between the languages in a zero-shot manner. Once the in-domain data is detected by the classifier, the NMT model is then adapted to the new domain by jointly learning translation and domain discrimination tasks. We evaluate our cross-lingual data selection method on NMT across five diverse domains in three language pairs, as well as a real-world scenario of translation for COVID-19. The results show that our proposed method outperforms other selection baselines up to +1.5 BLEU score.
Data selection has proven its merit for improving Neural Machine Translation (NMT), when applied to authentic data. But the benefit of using synthetic data in NMT training, produced by the popular back-translation technique, raises the question if data selection could also be useful for synthetic data? In this work we use Infrequent N-gram Recovery (INR) and Feature Decay Algorithms (FDA), two transductive data selection methods to obtain subsets of sentences from synthetic data. These methods ensure that selected sentences share n-grams with the test set so the NMT model can be adapted to translate it. Performing data selection on back-translated data creates new challenges as the source-side may contain noise originated by the model used in the back-translation. Hence, finding n-grams present in the test set become more difficult. Despite that, in our work we show that adapting a model with a selection of synthetic data is an useful approach.
Over the last few years two promising research directions in low-resource neural machine translation (NMT) have emerged. The first focuses on utilizing high-resource languages to improve the quality of low-resource languages via multilingual NMT. The second direction employs monolingual data with self-supervision to pre-train translation models, followed by fine-tuning on small amounts of supervised data. In this work, we join these two lines of research and demonstrate the efficacy of monolingual data with self-supervision in multilingual NMT. We offer three major results: (i) Using monolingual data significantly boosts the translation quality of low-resource languages in multilingual models. (ii) Self-supervision improves zero-shot translation quality in multilingual models. (iii) Leveraging monolingual data with self-supervision provides a viable path towards adding new languages to multilingual models, getting up to 33 BLEU on ro-en translation without any parallel data or back-translation.
We introduce Data Diversification: a simple but effective strategy to boost neural machine translation (NMT) performance. It diversifies the training data by using the predictions of multiple forward and backward models and then merging them with the original dataset on which the final NMT model is trained. Our method is applicable to all NMT models. It does not require extra monolingual data like back-translation, nor does it add more computations and parameters like ensembles of models. Our method achieves state-of-the-art BLEU scores of 30.7 and 43.7 in the WMT14 English-German and English-French translation tasks, respectively. It also substantially improves on 8 other translation tasks: 4 IWSLT tasks (English-German and English-French) and 4 low-resource translation tasks (English-Nepali and English-Sinhala). We demonstrate that our method is more effective than knowledge distillation and dual learning, it exhibits strong correlation with ensembles of models, and it trades perplexity off for better BLEU score. We have released our source code at https://github.com/nxphi47/data_diversification
We release a multilingual neural machine translation model, which can be used to translate text in the biomedical domain. The model can translate from 5 languages (French, German, Italian, Korean and Spanish) into English. It is trained with large amounts of generic and biomedical data, using domain tags. Our benchmarks show that it performs near state-of-the-art both on news (generic domain) and biomedical test sets, and that it outperforms the existing publicly released models. We believe that this release will help the large-scale multilingual analysis of the digital content of the COVID-19 crisis and of its effects on society, economy, and healthcare policies. We also release a test set of biomedical text for Korean-English. It consists of 758 sentences from official guidelines and recent papers, all about COVID-19.