Do you want to publish a course? Click here

Molecule-surface interaction from van der Waals-corrected semilocal density functionals: the example of thiophene on transition-metal surfaces

60   0   0.0 ( 0 )
 Added by Santosh Adhikari
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Semi-local density functional approximations are widely used. None of them can capture the long-range van der Waals (vdW) attraction between separated subsystems, but they differ remarkably in the extent to which they capture intermediate-range vdW effects responsible for equilibrium bonds between neighboring small closed-shell subsystems. The local density approximation (LDA) often overestimates this effect, while the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) underestimates it. The strongly-constrained and appropriately normed (SCAN) meta-GGA often estimates it well. All of these semi-local functionals require an additive non-local correction such as the revised Vydrov-Van Voorhis 2010 (rVV10) to capture the long-range part. This work reports adsorption energies and the corresponding geometry of the aromatic thiophene (C$_4$H$_4$S) bound to transition metal surfaces. The adsorption process requires a genuine interplay of covalent and weak binding and requires a simultaneously accurate description of surface and adsorption energies with the correct prediction of the adsorption site. All these quantities must come from well balanced short and long-range correlation effects for a universally applicable method for weak interactions with chemical accuracy.

rate research

Read More

The non-local van der Waals density functional (vdW-DF) has had tremendous success since its inception in 2004 due to its constraint-based formalism that is rigorously derived from a many-body starting point. However, while vdW-DF can describe binding energies and structures for van der Waals complexes and mixed systems with good accuracy, one long-standing criticism---also since its inception---has been that the $C_6$ coefficients that derive from the vdW-DF framework are largely inaccurate and can be wrong by more than a factor of two. It has long been thought that this failure to describe the $C_6$ coefficients is a conceptual flaw of the underlying plasmon framework used to derive vdW-DF. We prove here that this is not the case and that accurate $C_6$ coefficient can be obtained without sacrificing the accuracy at binding separations from a modified framework that is fully consistent with the constraints and design philosophy of the original vdW-DF formulation. Our design exploits a degree of freedom in the plasmon-dispersion model $omega_{mathbf{q}}$, modifying the strength of the long-range van der Waals interaction and the cross-over from long to short separations, with additional parameters tuned_ to reference systems. Testing the new formulation for a range of different systems, we not only confirm the greatly improved description of $C_6$ coefficients, but we also find excellent performance for molecular dimers and other systems. The importance of this development is not necessarily that particular aspects such as $C_6$ coefficients or binding energies are improved, but rather that our finding opens the door for further conceptual developments of an entirely unexplored direction within the exact same constrained-based non-local framework that made vdW-DF so successful in the first place.
Due to a strong Coulomb interaction, excitons dominate the excitation kinetics in 2D materials. While Coulomb-scattering between electrons has been well studied, the interaction of excitons is more challenging and remains to be explored. As neutral composite bosons consisting of electrons and holes, excitons show a non-trivial scattering dynamics. Here, we study on microscopic footing exciton-exciton interaction in transition-metal dichalcogenides and related van der Waals heterostructures. We demonstrate that the crucial criterion for efficient scattering is a large electron/hole mass asymmetry giving rise to internal charge inhomogeneities of excitons and emphasizing their cobosonic substructure. Furthermore, both exchange and direct exciton-exciton interactions are boosted by enhanced exciton Bohr radii. We also predict an unexpected temperature dependence that is usually associated to phonon-driven scattering and we reveal an orders of magnitude stronger interaction of interlayer excitons due to their permanent dipole moment. The developed approach can be generalized to arbitrary material systems and will help to study strongly correlated exciton systems, such as moire super lattices.
The nonlocal correlation energy in the van der Waals density functional (vdW-DF) method [Phys. Rev. Lett. 92, 246401 (2004); Phys. Rev. B 76, 125112 (2007); Phys. Rev. B 89, 035412 (2014)] can be interpreted in terms of a coupling of zero-point energies of characteristic modes of semilocal exchange-correlation (xc) holes. These xc holes reflect the internal functional in the framework of the vdW-DF method [Phys. Rev. B 82, 081101(2010)]. We explore the internal xc hole components, showing that they share properties with those of the generalized-gradient approximation. We use these results to illustrate the nonlocality in the vdW-DF description and analyze the vdW-DF formulation of nonlocal correlation.
We present the idea and illustrate potential benefits of having a tool chain of closely related regular, unscreened and screened hybrid exchange-correlation (XC) functionals, all within the consistent formulation of the van der Waals density functional (vdW-DF) method [JPCM 32, 393001 (2020)]. Use of this chain of nonempirical XC functionals allows us to map when the inclusion of truly nonlocal exchange and of truly nonlocal correlation is important. Here we begin the mapping by addressing hard and soft material challenges: magnetic elements, perovskites, and biomolecular problems. We also predict the structure and polarization for a ferroelectric polymer. To facilitate this work and future broader explorations, we furthermore present a stress formulation for spin vdW-DF and illustrate use of a simple stability-modeling scheme to assert when the prediction of a soft mode (an imaginary-frequency vibrational mode, ubiquitous in perovskites and soft matter) implies a prediction of an actual low-temperature transformation.
Van der Waals (vdW) heterobilayers formed by two-dimensional (2D) transition metal dichalcogenides (TMDCs) created a promising platform for various electronic and optical properties. ab initio band results indicate that the band offset of type-II band alignment in TMDCs vdW heterobilayer could be tuned by introducing Janus WSSe monolayer, instead of an external electric field. On the basis of symmetry analysis, the allowed interlayer hopping channels of TMDCs vdW heterobilayer were determined, and a four-level kp model was developed to obtain the interlayer hopping. Results indicate that the interlayer coupling strength could be tuned by interlayer electric polarization featured by various band offsets. Moreover, the difference in the formation mechanism of interlayer valley excitons in different TMDCs vdW heterobilayers with various interlayer hopping strength was also clarified.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا