Do you want to publish a course? Click here

The Multi-Regge Limit from the Wilson Loop OPE

100   0   0.0 ( 0 )
 Added by Vsevolod Chestnov
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The finite remainder function for planar, color-ordered, maximally helicity violating scattering processes in N=4 super Yang-Mills theory possesses a non-vanishing multi-Regge limit that depends on the choice of a Mandelstam region. We analyze the combined multi-Regge collinear limit in all Mandelstam regions through an analytic continuation of the Wilson loop OPE. At leading order, the former is determined by the gluon excitation of the Gubser-Klebanov-Polyakov string. We illustrate the general procedure at the example of the heptagon remainder function at two loops. In this case, the continuation of the leading order terms in the Wilson loop OPE suffices to determine the two-loop multi-Regge heptagon functions in all Mandelstam regions from their symbols. The expressions we obtain are fully consistent with recent results by Del Duca et al.



rate research

Read More

A recent, integrability-based conjecture in the framework of the Wilson loop OPE for N=4 SYM theory, predicts the leading OPE contribution for the hexagon MHV remainder function and NMHV ratio function to all loops, in integral form. We prove that these integrals evaluate to a particular basis of harmonic polylogarithms, at any order in the weak coupling expansion. The proof constitutes an algorithm for the direct computation of the integrals, which we employ in order to obtain the full (N)MHV OPE contribution in question up to 6 loops, and certain parts of it up to 12 loops. We attach computer-readable files with our results, as well as an algorithm implementation which may be readily used to generate higher-loop corrections. The feasibility of obtaining the explicit kinematical dependence of the first term in the OPE in principle at arbitrary loop order, offers promise for the suitability of this approach as a non-perturbative description of Wilson loops/scattering amplitudes.
We analyse the OPE contribution of gluon bound states in the double scaling limit of the hexagonal Wilson loop in planar N=4 super Yang-Mills theory. We provide a systematic procedure for perturbatively resumming the contributions from single-particle bound states of gluons and expressing the result order by order in terms of two-variable polylogarithms. We also analyse certain contributions from two-particle gluon bound states and find that, after analytic continuation to the $2to 4$ Mandelstam region and passing to multi-Regge kinematics (MRK), only the single-particle gluon bound states contribute. From this double-scaled version of MRK we are able to reconstruct the full hexagon remainder function in MRK up to five loops by invoking single-valuedness of the results.
A novel way of computing high-order amplitudes in the multi-Regge limit of planar maximally supersymmetric Yang-Mills theory is presented. In this framework, we are able to obtain high-loop and high-leg results by an easy operation on known amplitudes with fewer loops and lower multiplicity. This mechanism will be reviewed, along with an ensuing factorisation which allows us to determine leading logarithmic MHV results for any number of legs at a fixed loop order.
We propose an all-loop expression for scattering amplitudes in planar N=4 super Yang-Mills theory in multi-Regge kinematics valid for all multiplicities, all helicity configurations and arbitrary logarithmic accuracy. Our expression is arrived at from comparing explicit perturbative results with general expectations from the integrable structure of a closely related collinear limit. A crucial ingredient of the analysis is an all-order extension for the central emission vertex that we recently computed at next-to-leading logarithmic accuracy. As an application, we use our all-order formula to prove that all amplitudes in this theory in multi-Regge kinematics are single-valued multiple polylogarithms of uniform transcendental weight.
We perform exact computations of correlation functions of 1/2-BPS local operators and protected operator insertions on the 1/8-BPS Wilson loop in $mathcal{N}=4$ SYM. This generalizes the results of our previous paper arXiv:1802.05201, which employs supersymmetric localization, OPE and the Gram-Schmidt process. In particular, we conduct a detailed analysis for the 1/2-BPS circular (or straight) Wilson loop in the planar limit, which defines an interesting nontrivial defect CFT. We compute its bulk-defect structure constants at finite t Hooft coupling, and present simple integral expressions in terms of the $Q$-functions that appear in the Quantum Spectral Curve---a formalism originally introduced for the computation of the operator spectrum. The results at strong coupling are found to be in precise agreement with the holographic calculation based on perturbation theory around the AdS$_2$ string worldsheet, where they correspond to correlation functions of open string fluctuations and closed string vertex operators inserted on the worldsheet. Along the way, we clarify several aspects of the Gram-Schmidt analysis which were not addressed in the previous paper. In particular, we clarify the role played by the multi-trace operators at the non-planar level, and confirm its importance by computing the non-planar correction to the defect two-point function. We also provide a formula for the first non-planar correction to the defect correlators in terms of the Quantum Spectral Curve, which suggests the potential applicability of the formalism to the non-planar correlation functions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا