Do you want to publish a course? Click here

New parametrization of the form factors in $bar{B}to Dellbar{ u}_ell$ decays

58   0   0.0 ( 0 )
 Added by De-Liang Yao
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

A new model-independent parametrization is proposed for the hadronic form factors in the semileptonic $bar{B}to Dellbar{ u}_ell$ decay. By a combined consideration of the recent experimental and lattice QCD data, we determine precisely the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cb}|=41.01(75)times 10^{-3}$ and the ratio $mathcal{R}_D=frac{mathcal{BR}(bar{B}to D tau bar{ u}_tau)}{mathcal{BR}(bar{B}to D ell bar{ u}_ell)}=0.301(5)$. The coefficients in this parametrization, related to phase shifts by sumrulelike dispersion relations and hence called phase moments, encode important scattering information of the $bar{B}bar{D}$ interactions which are poorly known so far. Thus, we give strong hints about the existence of at least one bound and one virtual $bar B bar D$ $S$-wave $0^+$ states, subject to uncertainties produced by potentially sizable inelastic effects. This formalism is also applicable for any other semileptonic processes induced by the weak $bto c$ transition.



rate research

Read More

We compute perturbative QCD corrections to $B to D$ form factors at leading power in $Lambda/m_b$, at large hadronic recoil, from the light-cone sum rules (LCSR) with $B$-meson distribution amplitudes in HQET. QCD factorization for the vacuum-to-$B$-meson correlation function with an interpolating current for the $D$-meson is demonstrated explicitly at one loop with the power counting scheme $m_c sim {cal O} left (sqrt{Lambda , m_b} right ) $. The jet functions encoding information of the hard-collinear dynamics in the above-mentioned correlation function are complicated by the appearance of an additional hard-collinear scale $m_c$, compared to the counterparts entering the factorization formula of the vacuum-to-$B$-meson correction function for the construction of $B to pi$ from factors. Inspecting the next-to-leading-logarithmic sum rules for the form factors of $B to D ell u$ indicates that perturbative corrections to the hard-collinear functions are more profound than that for the hard functions, with the default theory inputs, in the physical kinematic region. We further compute the subleading power correction induced by the three-particle quark-gluon distribution amplitudes of the $B$-meson at tree level employing the background gluon field approach. The LCSR predictions for the semileptonic $B to D ell u$ form factors are then extrapolated to the entire kinematic region with the $z$-series parametrization. Phenomenological implications of our determinations for the form factors $f_{BD}^{+, 0}(q^2)$ are explored by investigating the (differential) branching fractions and the $R(D)$ ratio of $B to D ell u$ and by determining the CKM matrix element $|V_{cb}|$ from the total decay rate of $B to D mu u_{mu}$.
We study the exclusive semileptonic $B$-meson decays $Bto K(pi)ell^+ell^-$, $Bto K(pi) ubar u$, and $Btopitau u$, computing observables in the Standard model using the recent lattice-QCD results for the underlying form factors from the Fermilab Lattice and MILC Collaborations. These processes provide theoretically clean windows into physics beyond the Standard Model because the hadronic uncertainties are now under good control for suitably binned observables. For example, the resulting partially integrated branching fractions for $Btopimu^+mu^-$ and $Bto Kmu^+mu^-$ outside the charmonium resonance region are 1-2$sigma$ higher than the LHCb Collaborations recent measurements, where the theoretical and experimental errors are commensurate. The combined tension is 1.7$sigma$. Combining the Standard-Model rates with LHCbs measurements yields values for the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements $|V_{td}|=7.45{(69)}times10^{-3}$, $|V_{ts}|=35.7(1.5)times10^{-3}$, and $|V_{td}/V_{ts}|=0.201{(20)}$, which are compatible with the values obtained from neutral $B_{(s)}$-meson oscillations and have competitive uncertainties. Alternatively, taking the CKM matrix elements from unitarity, we constrain new-physics contributions at the electroweak scale. The constraints on the Wilson coefficients ${rm Re}(C_9)$ and ${rm Re}(C_{10})$ from $Btopimu^+mu^-$ and $Bto Kmu^+mu^-$ are competitive with those from $Bto K^* mu^+mu^-$, and display a 2.0$sigma$ tension with the Standard Model. Our predictions for $Bto K(pi) ubar u$ and $Btopitau u$ are close to the current experimental limits.
Applying the vacuum-to-$B$-meson correlation functions with an interpolating current for the light vector meson we construct the light-cone sum rules (LCSR) for the effective form factors $xi_{parallel}(n cdot p)$, $xi_{perp}(n cdot p)$, $Xi_{parallel}(tau, n cdot p)$ and $Xi_{perp}(tau, n cdot p)$, defined by the corresponding hadronic matrix elements in soft-collinear effective theory (SCET), entering the leading-power factorization formulae for QCD form factors responsible for $B to V ell bar u_{ell}$ and $B to V ell bar ell$ decays at large hadronic recoil at next-to-leading-order in QCD. The light-quark mass effect for the local SCET form factors $xi_{parallel}(n cdot p)$ and $xi_{perp}(n cdot p)$ is also computed from the LCSR method with the $B$-meson light-cone distribution amplitude $phi_B^{+}(omega, mu)$ at ${cal O}(alpha_s)$. Furthermore, the subleading power corrections to $B to V$ form factors from the higher-twist $B$-meson light-cone distribution amplitudes are also computed with the same method at tree level up to the twist-six accuracy. Having at our disposal the LCSR predictions for $B to V$ form factors, we further perform new determinations of the CKM matrix element $|V_{ub}|$ from the semileptonic $B to rho , ell , bar u_{ell}$ and $B to omega , ell , bar u_{ell}$ decays, and predict the normalized differential branching fractions and the $q^2$-binned $K^{ast}$ longitudinal polarization fractions of the exclusive rare $B to K^{ast} , u_{ell} , bar u_{ell}$ decays.
We carry out an analysis of the full set of ten $bar{B}to D^{(*)}$ form factors within the framework of the Heavy-Quark Expansion (HQE) to order $mathcal{O}(alpha_s,,1/m_b,,1/m_c^2)$, both with and without the use of experimental data. This becomes possible due to a recent calculation of these form factors at and beyond the maximal physical recoil using QCD light-cone sum rules, in combination with constraints from lattice QCD, QCD three-point sum rules and unitarity. We find good agreement amongst the various theoretical results, as well as between the theoretical results and the kinematical distributions in $bar{B}to D^{(*)}lbrace e^-,mu^-rbracebar u$ measurements. The coefficients entering at the $1/m_c^2$ level are found to be of $mathcal{O}(1)$, indicating convergence of the HQE. The phenomenological implications of our study include an updated exclusive determination of $|V_{cb}|$ in the HQE, which is compatible with both the exclusive determination using the BGL parametrization and with the inclusive determination. We also revisit predictions for the lepton-flavour universality ratios $R_{D^{(*)}}$, the $tau$ polarization observables $P_tau^{D^{(*)}}$, and the longitudinal polarization fraction $F_L$. Posterior samples for the HQE parameters are provided as ancillary files, allowing for their use in subsequent studies.
The weak decays of the axial-vector tetraquark $T_{bb;bar{u} bar{d}}^{-}$ to the scalar state $Z_{bc;bar{u} bar{d}}^{0}$ are investigated using the QCD three-point sum rule approach. In order to explore the process $T_{bb; bar{u} bar{d}}^{-} to Z_{bc;bar{u} bar{d}}^{0}l bar{ u_l}$, we recalculate the spectroscopic parameters of the tetraquark $T_{bb;bar{u} bar{d}}^{-}$ and find the mass and coupling of the scalar four-quark system $Z_{bc;bar{u} bar{d}}^{0}$, which are important ingredients of calculations. The spectroscopic parameters of these tetraquarks are computed in the framework of the QCD two-point sum rule method by taking into account various condensates up to dimension ten. The mass of the $T_{bb;bar{u} bar{ d}}^{-}$ state is found to be $m=(10035~pm 260)~mathrm{MeV}$, which demonstrates that it is stable against the strong and electromagnetic decays. The full width $Gamma$ and mean lifetime $tau$ of $T_{bb;bar{u} bar{d} }^{-}$ are evaluated using its semileptonic decay channels $T_{bb; bar{u} bar{d}}^{-} to Z_{bc;bar{u} bar{d}}^{0}l bar{ u_l}$, $l=e,mu$ and $tau$. The obtained results, $Gamma=(7.17pm 1.23)times 10^{-8 } mathrm{MeV}$ and $tau =9.18_{-1.34}^{+1.90}~mathrm{fs}$, can be useful for experimental investigations of the doubly-heavy tetraquarks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا