Do you want to publish a course? Click here

Transient quantum isolation and critical behavior in the magnetization dynamics of half-metallic manganites

70   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We combine time resolved pump-probe Magneto-Optical Kerr Effect and Photoelectron Spectroscopy experiments supported by theoretical analysis to determine the relaxation dynamics of delocalized electrons in half-metallic ferromagnetic manganite $La_{1-x}Sr_{x}MnO_{3}$. We observe that the half-metallic character of $La_{1-x}Sr_{x}MnO_{3}$ determines the timescale of both the electronic phase transition and the quenching of magnetization, revealing a quantum isolation of the spin system in double exchange ferromagnets extending up to hundreds of picoseconds. We demonstrate the use of time-resolved hard X-ray photoelectron spectroscopy (TR-HAXPES) as a unique tool to single out the evolution of strongly correlated electronic states across a second-order phase transition in a complex material.



rate research

Read More

What happens to ferromagnetism at the surfaces and interfaces of manganites? With the competition between charge, spin, and orbital degrees of freedom, it is not surprising that the surface behavior may be profoundly different than that of the bulk. Using a powerful combination of two surface probes, tunneling and polarized x-ray interactions, this paper reviews our work on the nature of the electronic and magnetic states at manganite surfaces and interfaces. The general observation is that ferromagnetism is not the lowest energy state at the surface or interface, which results in a suppression or even loss of ferromagnetic order at the surface. Two cases will be discussed ranging from the surface of the quasi-2D bilayer manganite (La$_{2-2x}$Sr$_{1+2x}$Mn$_2$O$_7$) to the 3D Perovskite (La$_{2/3}$Sr$_{1/3}$MnO$_3$)/SrTiO$_3$ interface. For the bilayer manganite, that is, ferromagnetic and conducting in the bulk, these probes present clear evidence for an intrinsic insulating non-ferromagnetic surface layer atop adjacent subsurface layers that display the full bulk magnetization. This abrupt intrinsic magnetic interface is attributed to the weak inter-bilayer coupling native to these quasi-two-dimensional materials. This is in marked contrast to the non-layered manganite system (La$_{2/3}$Sr$_{1/3}$MnO$_3$/SrTiO$_3$), whose magnetization near the interface is less than half the bulk value at low temperatures and decreases with increasing temperature at a faster rate than the bulk.
78 - C.I. Ventura , B. Alascio 2003
Recently, based on the refined crystal structure of Pr0.6Ca0.4MnO3 from neutron diffraction, Daoud-Aladine et al.[PRL89,97205(2002)] have proposed a new ground state structure for the half-doped manganites R0.5Ca0.5MnO3, where R is a trivalent ion like Bi,La,Pr,Sm or Y. Their proposal describes the CE magnetic structure attributed to these materials as an arrangement of dimers along the ferromagnetic Mn zig-zag chains that form it. However, the dimers proposal is in conflict with the Goodenough-Kanamori-Anderson rules, which give a coherent description of many transition metal insulating compounds and predict the coexistence of Mn3+ and Mn4+ ions in equal parts in the half-doped manganites. On the other hand, Rivadulla et al.[PRB 66, 174432 (2002)] have studied several single crystal samples of half-doped manganites and propose a phase diagram in terms of the tolerance factor which contains both types of structures. In the present work we have calculated the magnon dispersion relations for the CE magnetic structure, arising for each type of proposal: the charge ordered and the dimer phases, respectively. We consider a three-dimensional unit cell containing 16 spins, and compare the magnetic excitations along different paths in the first Brillouin zone. We conclude that measurement of the magnon dispersion relations should allow a clear distinction between the two proposals, predicting qualitative differences arising along specific directions of propagation in the first Brillouin zone.
230 - Jiandi Zhang , F. Ye , Hao Sha 2007
Ferromagnetic (FM) manganites, a group of likely half-metallic oxides, are of special interest not only because they are a testing ground of the classical doubleexchange interaction mechanism for the colossal magnetoresistance, but also because they exhibit an extraordinary arena of emergent phenomena. These emergent phenomena are related to the complexity associated with strong interplay between charge, spin, orbital, and lattice. In this review, we focus on the use of inelastic neutron scattering to study the spin dynamics, mainly the magnon excitations in this class of FM metallic materials. In particular, we discussed the unusual magnon softening and damping near the Brillouin zone boundary in relatively narrow band compounds with strong Jahn-Teller lattice distortion and charge/orbital correlations. The anomalous behaviors of magnons in these compounds indicate the likelihood of cooperative excitations involving spin, lattice, as well as orbital degrees of freedom.
Magnetotransport measurements performed on several well-characterized highly oriented pyrolitic graphite and single crystalline Kish graphite samples reveal a reentrant metallic behavior in the basal-plane resistance at high magnetic fields, when only the lowest Landau levels are occupied. The results suggest that the quantum Hall effect and Landau-level-quantization-induced superconducting correlations are relevant to understand the metallic-like state(s) in graphite in the quantum limit.
We report on optically induced, ultrafast magnetization dynamics in the Heusler alloy $mathrm{Co_{2}FeAl}$, probed by time-resolved magneto-optical Kerr effect. Experimental results are compared to results from electronic structure theory and atomistic spin-dynamics simulations. Experimentally, we find that the demagnetization time ($tau_{M}$) in films of $mathrm{Co_{2}FeAl}$ is almost independent of varying structural order, and that it is similar to that in elemental 3d ferromagnets. In contrast, the slower process of magnetization recovery, specified by $tau_{R}$, is found to occur on picosecond time scales, and is demonstrated to correlate strongly with the Gilbert damping parameter ($alpha$). Our results show that $mathrm{Co_{2}FeAl}$ is unique, in that it is the first material that clearly demonstrates the importance of the damping parameter in the remagnetization process. Based on these results we argue that for $mathrm{Co_{2}FeAl}$ the remagnetization process is dominated by magnon dynamics, something which might have general applicability.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا