Do you want to publish a course? Click here

Budget Minimization with Precedence Constraints

95   0   0.0 ( 0 )
 Added by Marcus Kaiser
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Budget Minimization is a scheduling problem with precedence constraints, i.e., a scheduling problem on a partially ordered set of jobs $(N, unlhd)$. A job $j in N$ is available for scheduling, if all jobs $i in N$ with $i unlhd j$ are completed. Further, each job $j in N$ is assigned real valued costs $c_{j}$, which can be negative or positive. A schedule is an ordering $j_{1}, dots, j_{vert N vert}$ of all jobs in $N$. The budget of a schedule is the external investment needed to complete all jobs, i.e., it is $max_{l in {0, dots, vert N vert } } sum_{1 le k le l} c_{j_{k}}$. The goal is to find a schedule with minimum budget. Rafiey et al. (2015) showed that Budget Minimization is NP-hard following from a reduction from a molecular folding problem. We extend this result and prove that it is NP-hard to $alpha(N)$-approximate the minimum budget even on bipartite partial orders. We present structural insights that lead to arguably simpler algorithms and extensions of the results by Rafiey et al. (2015). In particular, we show that there always exists an optimal solution that partitions the set of jobs and schedules each subset independently of the other jobs. We use this structural insight to derive polynomial-time algorithms that solve the problem to optimality on series-parallel and convex bipartite partial orders.



rate research

Read More

78 - Tom as Feder , Pavol Hell , 2019
We consider acyclic r-colorings in graphs and digraphs: they color the vertices in r colors, each of which induces an acyclic graph or digraph. (This includes the dichromatic number of a digraph, and the arboricity of a graph.) For any girth and sufficiently high degree, we prove the NP-completeness of acyclic r-colorings; our method also implies the known analogue for classical colorings. The proofs use high girth graphs with high arboricity and dichromatic numbers. High girth graphs and digraphs with high chromatic and dichromatic numbers have been well studied; we re-derive the results from a general result about relational systems, which also implies the similar fact about high girth and high arboricity used in the proofs. These facts concern graphs and digraphs of high girth and low degree; we contrast them by considering acyclic colorings of tournaments (which have low girth and high degree). We prove that even though acyclic two-colorability of tournaments is known to be NP-complete, random acyclically r-colorable tournaments allow recovering an acyclic r-coloring in deterministic linear time, with high probablity.
We show that a simple Markov chain, the Glauber dynamics, can efficiently sample independent sets almost uniformly at random in polynomial time for graphs in a certain class. The class is determined by boundedness of a new graph parameter called bipartite pathwidth. This result, which we prove for the more general hardcore distribution with fugacity $lambda$, can be viewed as a strong generalisation of Jerrum and Sinclairs work on approximately counting matchings, that is, independent sets in line graphs. The class of graphs with bounded bipartite pathwidth includes claw-free graphs, which generalise line graphs. We consider two further generalisations of claw-free graphs and prove that these classes have bounded bipartite pathwidth. We also show how to extend all our results to polynomially-bounded vertex weights.
An incidence of an undirected graph G is a pair $(v,e)$ where $v$ is a vertex of $G$ and $e$ an edge of $G$ incident with $v$. Two incidences $(v,e)$ and $(w,f)$ are adjacent if one of the following holds: (i) $v = w$, (ii) $e = f$ or (iii) $vw = e$ or $f$. An incidence coloring of $G$ assigns a color to each incidence of $G$ in such a way that adjacent incidences get distinct colors. In 2005, Hosseini Dolama emph{et al.}~citep{ds05} proved that every graph with maximum average degree strictly less than $3$ can be incidence colored with $Delta+3$ colors. Recently, Bonamy emph{et al.}~citep{Bonamy} proved that every graph with maximum degree at least $4$ and with maximum average degree strictly less than $frac{7}{3}$ admits an incidence $(Delta+1)$-coloring. In this paper we give bounds for the number of colors needed to color graphs having maximum average degrees bounded by different values between $4$ and $6$. In particular we prove that every graph with maximum degree at least $7$ and with maximum average degree less than $4$ admits an incidence $(Delta+3)$-coloring. This result implies that every triangle-free planar graph with maximum degree at least $7$ is incidence $(Delta+3)$-colorable. We also prove that every graph with maximum average degree less than 6 admits an incidence $(Delta + 7)$-coloring. More generally, we prove that $Delta+k-1$ colors are enough when the maximum average degree is less than $k$ and the maximum degree is sufficiently large.
We organize a table of regular graphs with minimal diameters and minimal mean path lengths, large bisection widths and high degrees of symmetries, obtained by enumerations on supercomputers. These optimal graphs, many of which are newly discovered, may find wide applications, for example, in design of network topologies.
A homogeneous set of a graph $G$ is a set $X$ of vertices such that $2le lvert Xrvert <lvert V(G)rvert$ and no vertex in $V(G)-X$ has both a neighbor and a non-neighbor in $X$. A graph is prime if it has no homogeneous set. We present an algorithm to decide whether a class of graphs given by a finite set of forbidden induced subgraphs contains infinitely many non-isomorphic prime graphs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا