Time-Resolved Observation of Spin-Charge Deconfinement in Fermionic Hubbard Chains


Abstract in English

Elementary particles such as the electron carry several quantum numbers, for example, charge and spin. However, in an ensemble of strongly interacting particles, the emerging degrees of freedom can fundamentally differ from those of the individual constituents. Paradigmatic examples of this phenomenon are one-dimensional systems described by independent quasiparticles carrying either spin (spinon) or charge (holon). Here we report on the dynamical deconfinement of spin and charge excitations in real space following the removal of a particle in Fermi-Hubbard chains of ultracold atoms. Using space- and time-resolved quantum gas microscopy, we track the evolution of the excitations through their signatures in spin and charge correlations. By evaluating multi-point correlators, we quantify the spatial separation of the excitations in the context of fractionalization into single spinons and holons at finite temperatures.

Download