Do you want to publish a course? Click here

Impact of Cross-Sectional Uncertainties on DUNE Sensitivity due to Nuclear Effects

304   0   0.0 ( 0 )
 Added by Srishti Nagu
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

In neutrino oscillation experiments precise measurement of neutrino oscillation parameters is of prime importance as well as a challenge. To improve the statistics, presently running and proposed experiments are using heavy nuclear targets. These targets introduce nuclear effects and the quantification of these effects on neutrino oscillation parameters will be decisive in the prediction of neutrino oscillation physics. Limited understanding of neutrino nucleus interactions and inaccurate reconstruction of neutrino energy causes uncertainty in the cross section. The error in the determination of cross section which contributes to systematic error introduces error in the neutrino mixing parameters that are determined by these experiments. In this work we focus on the variation in the predictions of DUNE potential, arising due to systematic uncertainties, using two different event generators-GENIE and GiBUU. These generators have different and independent cross-section models. To check the DUNE potential with the two generators as mentioned we have checked the senstivity studies of DUNE for CP violation, mass hierarchy and octant degeneracy.



rate research

Read More

The precise measurement of neutrino oscillation parameters is one of the highest priorities in neutrino oscillation physics. To achieve the desired precision, it is necessary to reduce the systematic uncertainties related to neutrino energy reconstruction. An error in energy reconstruction is propagated to all the oscillation parameters, hence a careful estimation of neutrino energy is required. To increase the statistics, neutrino oscillation experiments use heavy nuclear targets like Argon(Z=18). The use of these nuclear targets introduces nuclear effects that severely impact the neutrino energy reconstruction which in turn poses influence in the determination of neutrino oscillation parameters. In this work, we have tried to quantify nuclear effects on the determination of CP phase at DUNE using final state interactions.
The full physics potential of the next-generation Deep Underground Neutrino Experiment (DUNE) is still being explored. In particular, there have been some recent studies on the possibility of improving DUNEs neutrino energy reconstruction. The main motivation is that a better determination of the neutrino energy in an event-by-event basis will translate into an improved measurement of the Dirac $CP$ phase and other neutrino oscillation parameters. To further motivate studies and improvements on the neutrino energy reconstruction, we evaluate the impact of energy resolution at DUNE on an illustrative new physics scenario, viz. non-standard interactions (NSI) of neutrinos with matter. We show that a better energy resolution in comparison to the ones given in the DUNE conceptual and technical design reports may significantly enhance the experimental sensitivity to NSI, particularly when degeneracies are present. While a better reconstruction of the first oscillation peak helps disentangling standard $CP$ effects from those coming from NSIs, we find that the second oscillation peak also plays a nontrivial role in improving DUNEs sensitivity.
The propagation of uncertainties in reaction cross sections and rates of neutron-, proton-, and alpha-induced reactions into the final isotopic abundances obtained in nucleosynthesis models is an important issue in studies of nucleosynthesis and Galactic Chemical Evolution. We developed a Monte Carlo method to allow large-scale postprocessing studies of the impact of nuclear uncertainties on nucleosynthesis. Temperature-dependent rate uncertainties combining realistic experimental and theoretical uncertainties are used. From detailed statistical analyses uncertainties in the final abundances are derived as probability density distributions. Furthermore, based on rate and abundance correlations an automated procedure identifies the most important reactions in complex flow patterns from superposition of many zones or tracers. The method so far was already applied to a number of nucleosynthesis processes. Here we focus on the production of p-nuclei in white dwarfs exploding as thermonuclear (type Ia) supernovae. We find generally small uncertainties in the final abundances despite of the dominance of theoretical nuclear uncertainties. A separate analysis of low- and high-density regions indicates that the total uncertainties are dominated by the high-density regions.
We reconsider the discovery limit of multi-ton direct detection dark matter experiments in the light of recent measurements of the coherent elastic neutrino-nucleus scattering process. Assuming the cross section to be a parameter entirely determined by data, rather than using its Standard Model prediction, we use the COHERENT CsI and LAr data sets to determine WIMP discovery limits. Being based on a data-driven approach, the results are thus free from theoretical assumptions and fall within the WIMP mass regions where XENONnT and DARWIN have best expected sensitivities. We further determine the impact of subleading nuclear form factor and weak mixing angle uncertainties effects on WIMP discovery limits. We point out that these effects, albeit small, should be taken into account. Moreover, to quantify the impact of new physics effects in the neutrino background, we revisit WIMP discovery limits assuming light vector and scalar mediators as well as neutrino magnetic moments/transitions. We stress that the presence of new interactions in the neutrino sector, in general, tend to worsen the WIMP discovery limit.
Asymptotic giant branch (AGB) stars with low initial mass (1 - 3 Msun) are responsible for the production of neutron-capture elements through the main s-process (main slow neutron capture process). The major neutron source is 13C(alpha, n)16O, which burns radiatively during the interpulse periods at about 8 keV and produces a rather low neutron density (10^7 n/cm^3). The second neutron source 22Ne(alpha, n)25Mg, partially activated during the convective thermal pulses when the energy reaches about 23 keV, gives rise to a small neutron exposure but a peaked neutron density (Nn(peak) > 10^11 n/cm^3). At metallicities close to solar, it does not substantially change the final s-process abundances, but mainly affects the isotopic ratios near s-path branchings sensitive to the neutron density. We examine the effect of the present uncertainties of the two neutron sources operating in AGB stars, as well as the competition with the 22Ne(alpha, gamma)26Mg reaction. The analysis is carried out on AGB the main-s process component (reproduced by an average between M(AGB; ini) = 1.5 and 3 Msun at half solar metallicity, see Arlandini et al. 1999), using a set of updated nucleosynthesis models. Major effects are seen close to the branching points. In particular, 13C(alpha, n)16O mainly affects 86Kr and 87Rb owing to the branching at 85Kr, while small variations are shown for heavy isotopes by decreasing or increasing our adopted rate by a factor of 2 - 3. By changing our 22Ne(alpha, n)25Mg rate within a factor of 2, a plausible reproduction of solar s-only isotopes is still obtained. We provide a general overview of the major consequences of these variations on the s-path. A complete description of each branching will be presented in Bisterzo et al., in preparation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا