No Arabic abstract
The population of near-Earth asteroids (NEAs) shows a large variety of objects in terms of physical and dynamical properties. They are subject to planetary encounters and to strong solar wind and radiation effects. Their study is also motivated by practical reasons regarding space exploration and long-term probability of impact with the Earth. We aim to spectrally characterize a significant sample of NEAs with sizes in the range of $sim$0.25 - 5.5 km (categorized as large), and search for connections between their spectral types and the orbital parameters. Optical spectra of NEAs were obtained using the Isaac Newton Telescope (INT) equipped with the IDS spectrograph. These observations are analyzed using taxonomic classification and by comparison with laboratory spectra of meteorites. A total number of 76 NEAs were observed. We classified 44 of them as Q/S-complex, 16 as B/C-complex, eight as V-types, and another eight belong to the remaining taxonomic classes. Our sample contains 27 asteroids categorized as potentially hazardous and 31 possible targets for space missions including (459872) 2014 EK24, (436724) 2011 UW158, and (67367) 2000 LY27. The spectral data corresponding to (276049) 2002 CE26 and (385186) 1994 AW1 shows the 0.7 $mu$m feature which indicates the presence of hydrated minerals on their surface. We report that Q-types have the lowest perihelia (a median value and absolute deviation of $0.797pm0.244$ AU) and are systematically larger than the S-type asteroids observed in our sample. We explain these observational evidences by thermal fatigue fragmentation as the main process for the rejuvenation of NEA surfaces. In general terms, the taxonomic distribution of our sample is similar to the previous studies and matches the broad groups of the inner main belt asteroids. Nevertheless, we found a wide diversity of spectra compared to the standard taxonomic types.
One-opposition near-Earth asteroids (NEAs) are growing in number, and they must be recovered to prevent loss and mismatch risk, and to improve their orbits, as they are likely to be too faint for detection in shallow surveys at future apparitions. We aimed to recover more than half of the one-opposition NEAs recommended for observations by the Minor Planet Center (MPC) using the Isaac Newton Telescope (INT) in soft-override mode and some fractions of available D-nights. During about 130 hours in total between 2013 and 2016, we targeted 368 NEAs, among which 56 potentially hazardous asteroids (PHAs), observing 437 INT Wide Field Camera (WFC) fields and recovering 280 NEAs (76% of all targets). Engaging a core team of about ten students and amateurs, we used the THELI, Astrometrica, and the Find_Orb software to identify all moving objects using the blink and track-and-stack method for the faintest targets and plotting the positional uncertainty ellipse from NEODyS. Most targets and recovered objects had apparent magnitudes centered around V~22.8 mag, with some becoming as faint as V~24 mag. One hundred and three objects (representing 28% of all targets) were recovered by EURONEAR alone by Aug 2017. Orbital arcs were prolonged typically from a few weeks to a few years; our oldest recoveries reach 16 years. The O-C residuals for our 1,854 NEA astrometric positions show that most measurements cluster closely around the origin. In addition to the recovered NEAs, 22,000 positions of about 3,500 known minor planets and another 10,000 observations of about 1,500 unknown objects (mostly main-belt objects) were promptly reported to the MPC by our team. Four new NEAs were discovered serendipitously in the analyzed fields, increasing the counting to nine NEAs discovered by the EURONEAR in 2014 and 2015.
The Canada-France-Hawaii Legacy Survey (CFHTLS) comprising about 25 000 MegaCam images was data mined to search for serendipitous encounters of known Near Earth Asteroids (NEAs) and Potentially Hazardous Asteroids (PHAs). A total of 143 asteroids (109 NEAs and 34 PHAs) were found on 508 candidate images which were field corrected and measured carefully, and their astrometry was reported to Minor Planet Centre. Both recoveries and precoveries (apparitions before discovery) were reported, including data for 27 precovered asteroids (20 NEAs and 7 PHAs) and 116 recovered asteroids (89 NEAs and 27 PHAs). Our data prolonged arcs for 41 orbits at first or last opposition, refined 35 orbits by fitting data taken at one new opposition, recovered 6 NEAs at their second opposition and allowed us to ameliorate most orbits and their Minimal Orbital Intersection Distance (MOID), an important parameter to monitor for potential Earth impact hazard in the future.
We seek evidence of the Yarkovsky effect among Near Earth Asteroids (NEAs) by measuring the Yarkovsky-related orbital drift from the orbital fit. To prevent the occurrence of unreliable detections we employ a high precision dynamical model, including the Newtonian attraction of 16 massive asteroids and the planetary relativistic terms, and a suitable astrometric data treatment. We find 21 NEAs whose orbital fits show a measurable orbital drift with a signal to noise ratio (SNR) greater than 3. The best determination is for asteroid (101955) 1999 RQ36, resulting in the recovery of one radar apparition and an orbit improvement by two orders of magnitude. In addition, we find 16 cases with a lower SNR that, despite being less reliable, are good candidates for becoming stronger detections in the future. In some cases it is possible to constrain physical quantities otherwise unknown by means of the detected orbital drift. Furthermore, the distribution of the detected orbital drifts shows an excess of retrograde rotators that can be connected to the delivery mechanism from the most important NEA feeding resonances and allows us to infer the distribution for NEAs obliquity. We discuss the implications of the Yarkovsky effect for impact predictions. In particular, for asteroid (29075) 1950 DA our results favor a retrograde rotation that would rule out an impact in 2880.
The cryogenic WISE mission in 2010 was extremely sensitive to asteroids and not biased against detecting dark objects. The albedos of 428 Near Earth Asteroids (NEAs) observed by WISE during its fully cryogenic mission can be fit quite well by a 3 parameter function that is the sum of two Rayleigh distributions. The Rayleigh distribution is zero for negative values, and follows $f(x) = x exp[-x^2/(2sigma^2)]/sigma^2$ for positive x. The peak value is at x=sigma, so the position and width are tied together. The three parameters are the fraction of the objects in the dark population, the position of the dark peak, and the position of the brighter peak. We find that 25.3% of the NEAs observed by WISE are in a very dark population peaking at $p_V = 0.03$, while the other 74.7% of the NEAs seen by WISE are in a moderately dark population peaking at $p_V = 0.168$. A consequence of this bimodal distribution is that the Congressional mandate to find 90% of all NEAs larger than 140 m diameter cannot be satisfied by surveying to H=22 mag, since a 140 m diameter asteroid at the very dark peak has H=23.7 mag, and more than 10% of NEAs are darker than p_V = 0.03.
M-type asteroids, as defined in the Tholen taxonomy (Tholen, 1984), are medium albedo bodies supposed to have a metallic composition and to be the progenitors both of differentiated iron-nickel meteorites and enstatite chondrites. We carried out a spectroscopic survey in the visible and near infrared wavelength range (0.4-2.5 micron) of 30 asteroids chosen from the population of asteroids initially classified as Tholen M -types, aiming to investigate their surface composition. The data were obtained during several observing runs during the years 2004-2007 at the TNG, NTT, and IRTF telescopes. We computed the spectral slopes in several wavelength ranges for each observed asteroid, and we searched for diagnostic spectral features. We confirm a large variety of spectral behaviors for these objects as their spectra are extended into the near-infrared, including the identification of weak absorption bands, mainly of the 0.9 micron band tentatively attributed to orthopyroxene, and of the 0.43 micron band that may be associated to chlorites and Mg-rich serpentines or pyroxene minerals such us pigeonite or augite. A comparison with previously published data indicates that the surfaces of several asteroids belonging to the M-class may vary significantly. We attempt to constrain the asteroid surface compositions of our sample by looking for meteorite spectral analogues in the RELAB database and by modelling with geographical mixtures of selected meteorites/minerals. We confirm that iron meteorites, pallasites, and enstatite chondrites are the best matches to most objects in our sample, as suggested for M-type asteroids. The presence of subtle absorption features on several asteroids confirms that not all objects defined by the Tholen M-class have a pure metallic composition.