No Arabic abstract
We show that the classification performance of graph convolutional networks (GCNs) is related to the alignment between features, graph, and ground truth, which we quantify using a subspace alignment measure (SAM) corresponding to the Frobenius norm of the matrix of pairwise chordal distances between three subspaces associated with features, graph, and ground truth. The proposed measure is based on the principal angles between subspaces and has both spectral and geometrical interpretations. We showcase the relationship between the SAM and the classification performance through the study of limiting cases of GCNs and systematic randomizations of both features and graph structure applied to a constructive example and several examples of citation networks of different origins. The analysis also reveals the relative importance of the graph and features for classification purposes.
Social reviews are indispensable resources for modern consumers decision making. For financial gain, companies pay fraudsters preferably in groups to demote or promote products and services since consumers are more likely to be misled by a large number of similar reviews from groups. Recent approaches on fraudster group detection employed handcrafted features of group behaviors without considering the semantic relation between reviews from the reviewers in a group. In this paper, we propose the first neural approach, HIN-RNN, a Heterogeneous Information Network (HIN) Compatible RNN for fraudster group detection that requires no handcrafted features. HIN-RNN provides a unifying architecture for representation learning of each reviewer, with the initial vector as the sum of word embeddings of all review text written by the same reviewer, concatenated by the ratio of negative reviews. Given a co-review network representing reviewers who have reviewed the same items with the same ratings and the reviewers vector representation, a collaboration matrix is acquired through HIN-RNN training. The proposed approach is confirmed to be effective with marked improvement over state-of-the-art approaches on both the Yelp (22% and 12% in terms of recall and F1-value, respectively) and Amazon (4% and 2% in terms of recall and F1-value, respectively) datasets.
The recent GRAPH-BERT model introduces a new approach to learning graph representations merely based on the attention mechanism. GRAPH-BERT provides an opportunity for transferring pre-trained models and learned graph representations across different tasks within the same graph dataset. In this paper, we will further investigate the graph-to-graph transfer of a universal GRAPH-BERT for graph representation learning across different graph datasets, and our proposed model is also referred to as the G5 for simplicity. Many challenges exist in learning G5 to adapt the distinct input and output configurations for each graph data source, as well as the information distributions differences. G5 introduces a pluggable model architecture: (a) each data source will be pre-processed with a unique input representation learning component; (b) each output application task will also have a specific functional component; and (c) all such diverse input and output components will all be conjuncted with a universal GRAPH-BERT core component via an input size unification layer and an output representation fusion layer, respectively. The G5 model removes the last obstacle for cross-graph representation learning and transfer. For the graph sources with very sparse training data, the G5 model pre-trained on other graphs can still be utilized for representation learning with necessary fine-tuning. Whats more, the architecture of G5 also allows us to learn a supervised functional classifier for data sources without any training data at all. Such a problem is also named as the Apocalypse Learning task in this paper. Two different label reasoning strategies, i.e., Cross-Source Classification Consistency Maximization (CCCM) and Cross-Source Dynamic Routing (CDR), are introduced in this paper to address the problem.
Can neural networks learn to compare graphs without feature engineering? In this paper, we show that it is possible to learn representations for graph similarity with neither domain knowledge nor supervision (i.e. feature engineering or labeled graphs). We propose Deep Divergence Graph Kernels, an unsupervised method for learning representations over graphs that encodes a relaxed notion of graph isomorphism. Our method consists of three parts. First, we learn an encoder for each anchor graph to capture its structure. Second, for each pair of graphs, we train a cross-graph attention network which uses the node representations of an anchor graph to reconstruct another graph. This approach, which we call isomorphism attention, captures how well the representations of one graph can encode another. We use the attention-augmented encoders predictions to define a divergence score for each pair of graphs. Finally, we construct an embedding space for all graphs using these pair-wise divergence scores. Unlike previous work, much of which relies on 1) supervision, 2) domain specific knowledge (e.g. a reliance on Weisfeiler-Lehman kernels), and 3) known node alignment, our unsupervised method jointly learns node representations, graph representations, and an attention-based alignment between graphs. Our experimental results show that Deep Divergence Graph Kernels can learn an unsupervised alignment between graphs, and that the learned representations achieve competitive results when used as features on a number of challenging graph classification tasks. Furthermore, we illustrate how the learned attention allows insight into the the alignment of sub-structures across graphs.
Throughout this paper, we focus on the improvement of the direct feedback alignment (DFA) algorithm and extend the usage of the DFA to convolutional and recurrent neural networks (CNNs and RNNs). Even though the DFA algorithm is biologically plausible and has a potential of high-speed training, it has not been considered as the substitute for back-propagation (BP) due to the low accuracy in the CNN and RNN training. In this work, we propose a new DFA algorithm for BP-level accurate CNN and RNN training. Firstly, we divide the network into several modules and apply the DFA algorithm within the module. Second, the DFA with the sparse backward weight is applied. It comes with a form of dilated convolution in the CNN case, and in a form of sparse matrix multiplication in the RNN case. Additionally, the error propagation method of CNN becomes simpler through the group convolution. Finally, hybrid DFA increases the accuracy of the CNN and RNN training to the BP-level while taking advantage of the parallelism and hardware efficiency of the DFA algorithm.
Effectively and efficiently deploying graph neural networks (GNNs) at scale remains one of the most challenging aspects of graph representation learning. Many powerful solutions have only ever been validated on comparatively small datasets, often with counter-intuitive outcomes -- a barrier which has been broken by the Open Graph Benchmark Large-Scale Challenge (OGB-LSC). We entered the OGB-LSC with two large-scale GNNs: a deep transductive node classifier powered by bootstrapping, and a very deep (up to 50-layer) inductive graph regressor regularised by denoising objectives. Our models achieved an award-level (top-3) performance on both the MAG240M and PCQM4M benchmarks. In doing so, we demonstrate evidence of scalable self-supervised graph representation learning, and utility of very deep GNNs -- both very important open issues. Our code is publicly available at: https://github.com/deepmind/deepmind-research/tree/master/ogb_lsc.