Do you want to publish a course? Click here

Deep multi-class learning from label proportions

119   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We propose a learning algorithm capable of learning from label proportions instead of direct data labels. In this scenario, our data are arranged into various bags of a certain size, and only the proportions of each label within a given bag are known. This is a common situation in cases where per-data labeling is lengthy, but a more general label is easily accessible. Several approaches have been proposed to learn in this setting with linear models in the multiclass setting, or with nonlinear models in the binary classification setting. Here we investigate the more general nonlinear multiclass setting, and compare two differentiable loss functions to train end-to-end deep neural networks from bags with label proportions. We illustrate the relevance of our methods on an image classification benchmark, and demonstrate the possibility to learn accurate image classifiers from bags of images.



rate research

Read More

135 - Xiuwen Gong , Dong Yuan , Wei Bao 2021
Embedding approaches have become one of the most pervasive techniques for multi-label classification. However, the training process of embedding methods usually involves a complex quadratic or semidefinite programming problem, or the model may even involve an NP-hard problem. Thus, such methods are prohibitive on large-scale applications. More importantly, much of the literature has already shown that the binary relevance (BR) method is usually good enough for some applications. Unfortunately, BR runs slowly due to its linear dependence on the size of the input data. The goal of this paper is to provide a simple method, yet with provable guarantees, which can achieve competitive performance without a complex training process. To achieve our goal, we provide a simple stochastic sketch strategy for multi-label classification and present theoretical results from both algorithmic and statistical learning perspectives. Our comprehensive empirical studies corroborate our theoretical findings and demonstrate the superiority of the proposed methods.
Multi-label classification (MLC) is an important class of machine learning problems that come with a wide spectrum of applications, each demanding a possibly different evaluation criterion. When solving the MLC problems, we generally expect the learning algorithm to take the hidden correlation of the labels into account to improve the prediction performance. Extracting the hidden correlation is generally a challenging task. In this work, we propose a novel deep learning framework to better extract the hidden correlation with the help of the memory structure within recurrent neural networks. The memory stores the temporary guesses on the labels and effectively allows the framework to rethink about the goodness and correlation of the guesses before making the final prediction. Furthermore, the rethinking process makes it easy to adapt to different evaluation criteria to match real-world application needs. In particular, the framework can be trained in an end-to-end style with respect to any given MLC evaluation criteria. The end-to-end design can be seamlessly combined with other deep learning techniques to conquer challenging MLC problems like image tagging. Experimental results across many real-world data sets justify that the rethinking framework indeed improves MLC performance across different evaluation criteria and leads to superior performance over state-of-the-art MLC algorithms.
Partial multi-label learning (PML) models the scenario where each training instance is annotated with a set of candidate labels, and only some of the labels are relevant. The PML problem is practical in real-world scenarios, as it is difficult and even impossible to obtain precisely labeled samples. Several PML solutions have been proposed to combat with the prone misled by the irrelevant labels concealed in the candidate labels, but they generally focus on the smoothness assumption in feature space or low-rank assumption in label space, while ignore the negative information between features and labels. Specifically, if two instances have largely overlapped candidate labels, irrespective of their feature similarity, their ground-truth labels should be similar; while if they are dissimilar in the feature and candidate label space, their ground-truth labels should be dissimilar with each other. To achieve a credible predictor on PML data, we propose a novel approach called PML-LFC (Partial Multi-label Learning with Label and Feature Collaboration). PML-LFC estimates the confidence values of relevant labels for each instance using the similarity from both the label and feature spaces, and trains the desired predictor with the estimated confidence values. PML-LFC achieves the predictor and the latent label matrix in a reciprocal reinforce manner by a unified model, and develops an alternative optimization procedure to optimize them. Extensive empirical study on both synthetic and real-world datasets demonstrates the superiority of PML-LFC.
187 - Zhuo Yang , Yufei Han , Guoxian Yu 2019
We propose to formulate multi-label learning as a estimation of class distribution in a non-linear embedding space, where for each label, its positive data embeddings and negative data embeddings distribute compactly to form a positive component and negative component respectively, while the positive component and negative component are pushed away from each other. Duo to the shared embedding space for all labels, the distribution of embeddings preserves instances label membership and feature matrix, thus encodes the feature-label relation and nonlinear label dependency. Labels of a given instance are inferred in the embedding space by measuring the probabilities of its belongingness to the positive or negative components of each label. Specially, the probabilities are modeled as the distance from the given instance to representative positive or negative prototypes. Extensive experiments validate that the proposed solution can provide distinctively more accurate multi-label classification than other state-of-the-art algorithms.
Multi-label classification (MLC) studies the problem where each instance is associated with multiple relevant labels, which leads to the exponential growth of output space. MLC encourages a popular framework named label compression (LC) for capturing label dependency with dimension reduction. Nevertheless, most existing LC methods failed to consider the influence of the feature space or misguided by original problematic features, so that may result in performance degeneration. In this paper, we present a compact learning (CL) framework to embed the features and labels simultaneously and with mutual guidance. The proposal is a versatile concept, hence the embedding way is arbitrary and independent of the subsequent learning process. Following its spirit, a simple yet effective implementation called compact multi-label learning (CMLL) is proposed to learn a compact low-dimensional representation for both spaces. CMLL maximizes the dependence between the embedded spaces of the labels and features, and minimizes the loss of label space recovery concurrently. Theoretically, we provide a general analysis for different embedding methods. Practically, we conduct extensive experiments to validate the effectiveness of the proposed method.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا