No Arabic abstract
Recently, the power of Gaia data has revealed an enhancement of high-mass white dwarfs (WDs) on the Hertzsprung--Russell diagram, called the Q branch. This branch is located at the high-mass end of the recently identified crystallization branch. Investigating its properties, we find that the number density and velocity distribution on the Q branch cannot be explained by the cooling delay of crystallization alone, suggesting the existence of an extra cooling delay. To quantify this delay, we statistically compare two age indicators -- the dynamical age inferred from transverse velocity, and the photometric isochrone age -- for more than one thousand high-mass WDs (1.08--1.23 $M_odot$) selected from Gaia Data Release 2. We show that about 6 % of the high-mass WDs must experience an 8 Gyr extra cooling delay on the Q branch, in addition to the crystallization and merger delays. This cooling anomaly is a challenge for WD cooling models. We point out that $^{22}$Ne settling in C/O-core WDs could account for this extra cooling delay.
Double white dwarf (double-WD) binaries may merge within a Hubble time and produce high-mass WDs. Compared to other high-mass WDs, the double-WD merger products have higher velocity dispersion because they are older. With the power of Gaia data, we show strong evidence for double-WD merger products among high-mass WDs by analyzing the transverse-velocity distribution of more than a thousand high-mass WDs (0.8--1.3 $M_odot$). We estimate that the fraction of double-WD merger products in our sample is about 20 %. We also obtain a precise double-WD merger rate and its mass dependence. Our merger rate estimates are close to binary population synthesis results and support the idea that double-WD mergers may contribute to a significant fraction of type Ia supernovae.
The evolution of white dwarfs is a simple gravothermal process. This process can be tested in two ways, through the luminosity function of these stars and through the secular variation of the period of pulsation of those stars that are variable. Here we show how the mass of the axion can be constrained using the white dwarf luminosity function.
High-field magnetic white dwarfs have been long suspected to be the result of stellar mergers. However, the nature of the coalescing stars and the precise mechanism that produces the magnetic field are still unknown. Here we show that the hot, convective, differentially rotating corona present in the outer layers of the remnant of the merger of two degenerate cores is able to produce magnetic fields of the required strength that do not decay for long timescales. We also show, using an state-of-the-art Monte Carlo simulator, that the expected number of high-field magnetic white dwarfs produced in this way is consistent with that found in the solar neighborhood.
The white dwarf SDSS J124043.01+671034.68 (SDSS J1240+6710) was previously found to have an oxygen-dominated atmosphere with significant traces of neon, magnesium, and silicon. A possible origin via a violent late thermal pulse or binary interactions have been suggested to explain this very unusual photospheric composition. We report the additional detection of carbon, sodium, and aluminium in far-ultraviolet and optical follow-up spectroscopy. No iron-group elements are detected, with tight upper limits on iron, cobalt and nickel, suggesting that the star underwent partial oxygen burning, but failed to ignite silicon burning. Modelling the spectral energy distribution and adopting the distance based on the Gaia parallax, we infer a low white dwarf mass, M(wd)=0.41+/-0.05Msun. The large space velocity of SDSS J1240+6710, computed from the Gaia proper motion and its radial velocity, is compatible with a Galactic rest-frame velocity of ~250km/s in the opposite direction with respect to the Galactic rotation, strongly supporting a binary origin of this star. We discuss the properties of SDSS J1240+6710 in the context of the recently identified survivors of thermonuclear supernovae, the D6 and LP 40-365 stars, and conclude that it is unlikely related to either of those two groups. We tentatively suggest that SDSS J1240+6710 is the partially burned remnant of a low-mass white dwarf that underwent a thermonuclear event.
White dwarfs are routinely observed to have polluted atmospheres, and sometimes significant infrared excesses, that indicate ongoing accretion of circumstellar dust and rocky debris. Typically this debris is assumed to be in the form of a (circular) disc, and to originate from asteroids that passed close enough to the white dwarf to be pulled apart by tides. However, theoretical considerations suggest that the circularisation of the debris, which initially occupies highly eccentric orbits, is very slow. We therefore hypothesise that the observations may be readily explained by the debris remaining on highly eccentric orbits, and we explore the properties of such debris. For the generic case of an asteroid originating at several au from the white dwarf, we find that all of the tidal debris is always bound to the white dwarf and that the orbital energy distribution of the debris is narrow enough that it executes similar elliptical orbits with only a narrow spread. Assuming that the tidal field of the white dwarf is sufficient to minimise the effects of self-gravity and collisions within the debris, we estimate the time over which the debris spreads into a single elliptical ring, and we generate toy spectra and lightcurves from the initial disruption to late times when the debris distribution is essentially time steady. Finally we speculate on the connection between these simple considerations and the observed properties of these systems, and on additional physical processes that may change this simple picture.