No Arabic abstract
A continual learning agent should be able to build on top of existing knowledge to learn on new data quickly while minimizing forgetting. Current intelligent systems based on neural network function approximators arguably do the opposite---they are highly prone to forgetting and rarely trained to facilitate future learning. One reason for this poor behavior is that they learn from a representation that is not explicitly trained for these two goals. In this paper, we propose OML, an objective that directly minimizes catastrophic interference by learning representations that accelerate future learning and are robust to forgetting under online updates in continual learning. We show that it is possible to learn naturally sparse representations that are more effective for online updating. Moreover, our algorithm is complementary to existing continual learning strategies, such as MER and GEM. Finally, we demonstrate that a basic online updating strategy on representations learned by OML is competitive with rehearsal based methods for continual learning. We release an implementation of our method at https://github.com/khurramjaved96/mrcl .
Learning a sequence of tasks without access to i.i.d. observations is a widely studied form of continual learning (CL) that remains challenging. In principle, Bayesian learning directly applies to this setting, since recursive and one-off Bayesian updates yield the same result. In practice, however, recursive updating often leads to poor trade-off solutions across tasks because approximate inference is necessary for most models of interest. Here, we describe an alternative Bayesian approach where task-conditioned parameter distributions are continually inferred from data. We offer a practical deep learning implementation of our framework based on probabilistic task-conditioned hypernetworks, an approach we term posterior meta-replay. Experiments on standard benchmarks show that our probabilistic hypernetworks compress sequences of posterior parameter distributions with virtually no forgetting. We obtain considerable performance gains compared to existing Bayesian CL methods, and identify task inference as our major limiting factor. This limitation has several causes that are independent of the considered sequential setting, opening up new avenues for progress in CL.
Continual learning is the problem of learning new tasks or knowledge while protecting old knowledge and ideally generalizing from old experience to learn new tasks faster. Neural networks trained by stochastic gradient descent often degrade on old tasks when trained successively on new tasks with different data distributions. This phenomenon, referred to as catastrophic forgetting, is considered a major hurdle to learning with non-stationary data or sequences of new tasks, and prevents networks from continually accumulating knowledge and skills. We examine this issue in the context of reinforcement learning, in a setting where an agent is exposed to tasks in a sequence. Unlike most other work, we do not provide an explicit indication to the model of task boundaries, which is the most general circumstance for a learning agent exposed to continuous experience. While various methods to counteract catastrophic forgetting have recently been proposed, we explore a straightforward, general, and seemingly overlooked solution - that of using experience replay buffers for all past events - with a mixture of on- and off-policy learning, leveraging behavioral cloning. We show that this strategy can still learn new tasks quickly yet can substantially reduce catastrophic forgetting in both Atari and DMLab domains, even matching the performance of methods that require task identities. When buffer storage is constrained, we confirm that a simple mechanism for randomly discarding data allows a limited size buffer to perform almost as well as an unbounded one.
Recent progress in AutoML has lead to state-of-the-art methods (e.g., AutoSKLearn) that can be readily used by non-experts to approach any supervised learning problem. Whereas these methods are quite effective, they are still limited in the sense that they work for tabular (matrix formatted) data only. This paper describes one step forward in trying to automate the design of supervised learning methods in the context of text mining. We introduce a meta learning methodology for automatically obtaining a representation for text mining tasks starting from raw text. We report experiments considering 60 different textual representations and more than 80 text mining datasets associated to a wide variety of tasks. Experimental results show the proposed methodology is a promising solution to obtain highly effective off the shell text classification pipelines.
Training a neural network for a classification task typically assumes that the data to train are given from the beginning. However, in the real world, additional data accumulate gradually and the model requires additional training without accessing the old training data. This usually leads to the catastrophic forgetting problem which is inevitable for the traditional training methodology of neural networks. In this paper, we propose a continual learning method that is able to learn additional tasks while retaining the performance of previously learned tasks by stacking parameters. Composed of two complementary components, the index module and the StackNet, our method estimates the index of the corresponding task for an input sample with the index module and utilizes a particular portion of StackNet with this index. The StackNet guarantees no degradation in the performance of the previously learned tasks and the index module shows high confidence in finding the origin of an input sample. Compared to the previous work of PackNet, our method is competitive and highly intuitive.
Representations are fundamental to artificial intelligence. The performance of a learning system depends on the type of representation used for representing the data. Typically, these representations are hand-engineered using domain knowledge. More recently, the trend is to learn these representations through stochastic gradient descent in multi-layer neural networks, which is called backprop. Learning the representations directly from the incoming data stream reduces the human labour involved in designing a learning system. More importantly, this allows in scaling of a learning system for difficult tasks. In this paper, we introduce a new incremental learning algorithm called crossprop, which learns incoming weights of hidden units based on the meta-gradient descent approach, that was previously introduced by Sutton (1992) and Schraudolph (1999) for learning step-sizes. The final update equation introduces an additional memory parameter for each of these weights and generalizes the backprop update equation. From our experiments, we show that crossprop learns and reuses its feature representation while tackling new and unseen tasks whereas backprop relearns a new feature representation.