Do you want to publish a course? Click here

Extreme value theory of evolving phenomena in complex dynamical systems: firing cascades in a model of neural network

96   0   0.0 ( 0 )
 Added by Giorgio Mantica
 Publication date 2019
  fields Biology
and research's language is English




Ask ChatGPT about the research

We extend the scope of the dynamical theory of extreme values to cover phenomena that do not happen instantaneously, but evolve over a finite, albeit unknown at the onset, time interval. We consider complex dynamical systems, composed of many individual subsystems linked by a network of interactions. As a specific example of the general theory, a model of neural network, introduced to describe the electrical activity of the cerebral cortex, is analyzed in detail: on the basis of this analysis we propose a novel definition of neuronal cascade, a physiological phenomenon of primary importance. We derive extreme value laws for the statistics of these cascades, both from the point of view of exceedances (that satisfy critical scaling theory) and of block maxima.



rate research

Read More

Noise-induced population bursting has been widely identified to play important roles in the information process. We constructed a mathematical model for a random and sparse neural network where bursting can be induced from the resting state by the global stochastic stimulus. Importantly, the noise-induced bursting dynamics of this network are mediated by calcium conductance. We use two spectral measures to evaluate the network coherence in the context of network bursts, the spike trains of all neurons and the individual bursts of all neurons. Our results show that the coherence of the network is optimized by an optimal level of stochastic stimulus, which is known as coherence resonance (CR). We also demonstrate that the interplay of calcium conductance and noise intensity can modify the degree of CR.
Research showed that, the information transmitted in biological neurons is encoded in the instants of successive action potentials or their firing rate. In addition to that, in-vivo operation of the neuron makes measurement difficult and thus continuous data collection is restricted. Due to those reasons, classical mean square estimation techniques that are frequently used in neural network training is very difficult to apply. In such situations, point processes and related likelihood methods may be beneficial. In this study, we will present how one can apply certain methods to use the stimulus-response data obtained from a neural process in the mathematical modeling of a neuron. The study is theoretical in nature and it will be supported by simulations. In addition it will be compared to a similar study performed on the same network model.
For the nervous system to work at all, a delicate balance of excitation and inhibition must be achieved. However, when such a balance is sought by global strategies, only few modes remain balanced close to instability, and all other modes are strongly stable. Here we present a simple model of neural tissue in which this balance is sought locally by neurons following `anti-Hebbian behavior: {sl all} degrees of freedom achieve a close balance of excitation and inhibition and become critical in the dynamical sense. At long timescales, the modes of our model oscillate around the instability line, so an extremely complex breakout dynamics ensues in which different modes of the system oscillate between prominence and extinction. We show the system develops various anomalous statistical behaviours and hence becomes self-organized critical in the statistical sense.
Excessively high, neural synchronisation has been associated with epileptic seizures, one of the most common brain diseases worldwide. A better understanding of neural synchronisation mechanisms can thus help control or even treat epilepsy. In this paper, we study neural synchronisation in a random network where nodes are neurons with excitatory and inhibitory synapses, and neural activity for each node is provided by the adaptive exponential integrate-and-fire model. In this framework, we verify that the decrease in the influence of inhibition can generate synchronisation originating from a pattern of desynchronised spikes. The transition from desynchronous spikes to synchronous bursts of activity, induced by varying the synaptic coupling, emerges in a hysteresis loop due to bistability where abnormal (excessively high synchronous) regimes exist. We verify that, for parameters in the bistability regime, a square current pulse can trigger excessively high (abnormal) synchronisation, a process that can reproduce features of epileptic seizures. Then, we show that it is possible to suppress such abnormal synchronisation by applying a small-amplitude external current on less than 10% of the neurons in the network. Our results demonstrate that external electrical stimulation not only can trigger synchronous behaviour, but more importantly, it can be used as a means to reduce abnormal synchronisation and thus, control or treat effectively epileptic seizures.
Topographic maps are a brain structure connecting pre-synpatic and post-synaptic brain regions. Topographic development is dependent on Hebbian-based plasticity mechanisms working in conjunction with spontaneous patterns of neural activity generated in the pre-synaptic regions. Studies performed in mouse have shown that these spontaneous patterns can exhibit complex spatial-temporal structures which existing models cannot incorporate. Neural field theories are appropriate modelling paradigms for topographic systems due to the dense nature of the connections between regions and can be augmented with a plasticity rule general enough to capture complex time-varying structures. We propose a theoretical framework for studying the development of topography in the context of complex spatial-temporal activity fed-forward from the pre-synaptic to post-synaptic regions. Analysis of the model leads to an analytic solution corroborating the conclusion that activity can drive the refinement of topographic projections. The analysis also suggests that biological noise is used in the development of topography to stabilise the dynamics. MCMC simulations are used to analyse and understand the differences in topographic refinement between wild-type and the $beta2$ knock-out mutant in mice. The time scale of the synaptic plasticity window is estimated as $0.56$ seconds in this context with a model fit of $R^2 = 0.81$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا