No Arabic abstract
FeSe$_{x}$Te$_{1-x}$ compounds present a complex phase diagram, ranging from the nematicity of FeSe to the $(pi, pi)$ magnetism of FeTe. We focus on FeSe$_{0.4}$Te$_{0.6}$, where the nematic ordering is absent at equilibrium. We use a time-resolved approach based on femtosecond light pulses to study the dynamics following photoexcitation in this system. The use of polarization-dependent time- and angle-resolved photoelectron spectroscopy allows us to reveal a photoinduced nematic metastable state, whose stabilization cannot be interpreted in terms of an effective photodoping. We argue that the 1.55 eV photon-energy-pump-pulse perturbs the $C_4$ symmetry of the system triggering the realization of the nematic state. The possibility to induce nematicity using an ultra-short pulse sheds a new light on the driving force behind the nematic symmetry breaking in iron-based superconductors. Our results weaken the idea that a low-energy coupling with fluctuations is a necessary condition to stabilize the nematic order and ascribe the origin of the nematic order in iron-based superconductors to a clear tendency of those systems towards orbital differentiation due to strong electronic correlations induced by the Hunds coupling.
We report on an apparent low-energy nanoscale electronic inhomogeneity in FeSe$_{0.4}$Te$_{0.6}$ due to the distribution of selenium and tellurium atoms revealed through unsupervised machine learning. Through an unsupervised clustering algorithm, characteristic spectra of selenium- and tellurium-rich regions are identified. The inhomogeneity linked to these spectra can clearly be traced in the differential conductance and is detected both at energy scales of a few electron volts as well as within a few millielectronvolts of the Fermi energy. By comparison with ARPES, this inhomogeneity can be linked to an electron-like band just above the Fermi energy. It is directly correlated with the local distribution of selenium and tellurium. There is no clear correlation with the magnitude of the superconducting gap, however the height of the coherence peaks shows significant correlation with the intensity with which this band is detected, and hence with the local chemical composition.
We measured the microwave surface impedance of FeSe$_{0.4}$Te$_{0.6}$ single crystals with- and without external magnetic fields. The superfluid density exhibited a quadratic temperature dependence, indicating a strong pair-breaking effect. The flux-flow resistivity behaved as $rho_f(Bll B_{rm c2})/rho_n=alpha B/B_{rm c2}$. The observed $alpha$ value of $approx0.66$ was considerably smaller than that of other Fe-based materials ($alphageq1$) and was attributed to a back-flow of superfluids remarkable in disordered superconductors. This is the first-time observation of the back-flow phenomenon caused by an origin other than the vortex pinning in multiple-band systems.
The electronic nematic phase is an unconventional state of matter that spontaneously breaks the rotational symmetry of electrons. In iron-pnictides/chalcogenides and cuprates, the nematic ordering and fluctuations have been suggested to have as-yet-unconfirmed roles in superconductivity. However, most studies have been conducted in thermal equilibrium, where the dynamical property and excitation can be masked by the coupling with the lattice. Here we use femtosecond optical pulse to perturb the electronic nematic order in FeSe. Through time-, energy-, momentum- and orbital-resolved photo-emission spectroscopy, we detect the ultrafast dynamics of electronic nematicity. In the strong-excitation regime, through the observation of Fermi surface anisotropy, we find a quick disappearance of the nematicity followed by a heavily-damped oscillation. This short-life nematicity oscillation is seemingly related to the imbalance of Fe 3dxz and dyz orbitals. These phenomena show critical behavior as a function of pump fluence. Our real-time observations reveal the nature of the electronic nematic excitation instantly decoupled from the underlying lattice.
We report microwave surface impedances of FeSe$_{0.4}$Te$_{0.6}$ single crystals measured at 12, 19, and 44 GHz. The penetration depth exhibits a power law behavior, $delta lambda_L=lambda_L (T)-lambda_L (0) propto CT^n$ with an exponent $nsimeq 2$, which is considered to result from impurity scattering. This behavior is consistent with $spm$-wave pairing symmetry. The temperature dependence of the superfluid density largely deviates from the behavior expected in the BCS theory. We believe that this deviation is caused by the crossover from the dirty regime near $T_c$ to the clean regime at low temperatures, which is supported by the rapid increase of the quasiparticle scattering time obtained from the microwave conductivity. We also believe that the previously published data of the superfluid density can be interpreted in this scenario.
Clarifying the origin of nematic state in FeSe is one of urgent problems in the field of iron-based superconductivity. Motivated by the discovery of a nematic solution in the density-functional theory implemented by on-site Coulomb interaction (DFT+$U$) [X. Long {it et al.,} npj Quantum Mater. {bf 5}, 50 (2020)], we reexamine the $U$ dependence of electronic states in the nonmagnetic normal state of FeSe and perform full multipolar analyses for the nematic state. We find that with increasing $U$ the normal state experiences a topological change of the Fermi surfaces before the emergence of a nematic ground state. The resulting nematic ground state is a multipolar state having both antiferro-hexadecapoles in the $E$-representation and ferro-multipoles in the $B_2$-representation on each Fe site. Cooperative coupling between the $E$ and $B_2$ multipoles in local coordinate with the $D_{2d}$ point group will play an important role in the formation of the $d_{xz},d_{yz}$ orbital-splitting nematic state not only in FeSe but also in other iron pnictides.