Do you want to publish a course? Click here

On the Expressive Power of Deep Polynomial Neural Networks

349   0   0.0 ( 0 )
 Added by Joe Kileel
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We study deep neural networks with polynomial activations, particularly their expressive power. For a fixed architecture and activation degree, a polynomial neural network defines an algebraic map from weights to polynomials. The image of this map is the functional space associated to the network, and it is an irreducible algebraic variety upon taking closure. This paper proposes the dimension of this variety as a precise measure of the expressive power of polynomial neural networks. We obtain several theoretical results regarding this dimension as a function of architecture, including an exact formula for high activation degrees, as well as upper and lower bounds on layer widths in order for deep polynomials networks to fill the ambient functional space. We also present computational evidence that it is profitable in terms of expressiveness for layer widths to increase monotonically and then decrease monotonically. Finally, we link our study to favorable optimization properties when training weights, and we draw intriguing connections with tensor and polynomial decompositions.



rate research

Read More

141 - Or Sharir , Amnon Shashua 2017
Expressive efficiency refers to the relation between two architectures A and B, whereby any function realized by B could be replicated by A, but there exists functions realized by A, which cannot be replicated by B unless its size grows significantly larger. For example, it is known that deep networks are exponentially efficient with respect to shallow networks, in the sense that a shallow network must grow exponentially large in order to approximate the functions represented by a deep network of polynomial size. In this work, we extend the study of expressive efficiency to the attribute of network connectivity and in particular to the effect of overlaps in the convolutional process, i.e., when the stride of the convolution is smaller than its filter size (receptive field). To theoretically analyze this aspect of networks design, we focus on a well-established surrogate for ConvNets called Convolutional Arithmetic Circuits (ConvACs), and then demonstrate empirically that our results hold for standard ConvNets as well. Specifically, our analysis shows that having overlapping local receptive fields, and more broadly denser connectivity, results in an exponential increase in the expressive capacity of neural networks. Moreover, while denser connectivity can increase the expressive capacity, we show that the most common types of modern architectures already exhibit exponential increase in expressivity, without relying on fully-connected layers.
Deep Convolutional Neural Networks (DCNNs) are currently the method of choice both for generative, as well as for discriminative learning in computer vision and machine learning. The success of DCNNs can be attributed to the careful selection of their building blocks (e.g., residual blocks, rectifiers, sophisticated normalization schemes, to mention but a few). In this paper, we propose $Pi$-Nets, a new class of function approximators based on polynomial expansions. $Pi$-Nets are polynomial neural networks, i.e., the output is a high-order polynomial of the input. The unknown parameters, which are naturally represented by high-order tensors, are estimated through a collective tensor factorization with factors sharing. We introduce three tensor decompositions that significantly reduce the number of parameters and show how they can be efficiently implemented by hierarchical neural networks. We empirically demonstrate that $Pi$-Nets are very expressive and they even produce good results without the use of non-linear activation functions in a large battery of tasks and signals, i.e., images, graphs, and audio. When used in conjunction with activation functions, $Pi$-Nets produce state-of-the-art results in three challenging tasks, i.e. image generation, face verification and 3D mesh representation learning. The source code is available at url{https://github.com/grigorisg9gr/polynomial_nets}.
Deep Convolutional Neural Networks (DCNNs) is currently the method of choice both for generative, as well as for discriminative learning in computer vision and machine learning. The success of DCNNs can be attributed to the careful selection of their building blocks (e.g., residual blocks, rectifiers, sophisticated normalization schemes, to mention but a few). In this paper, we propose $Pi$-Nets, a new class of DCNNs. $Pi$-Nets are polynomial neural networks, i.e., the output is a high-order polynomial of the input. $Pi$-Nets can be implemented using special kind of skip connections and their parameters can be represented via high-order tensors. We empirically demonstrate that $Pi$-Nets have better representation power than standard DCNNs and they even produce good results without the use of non-linear activation functions in a large battery of tasks and signals, i.e., images, graphs, and audio. When used in conjunction with activation functions, $Pi$-Nets produce state-of-the-art results in challenging tasks, such as image generation. Lastly, our framework elucidates why recent generative models, such as StyleGAN, improve upon their predecessors, e.g., ProGAN.
Recently, the Weisfeiler-Lehman (WL) graph isomorphism test was used to measure the expressiveness of graph neural networks (GNNs), showing that the neighborhood aggregation GNNs were at most as powerful as 1-WL test in distinguishing graph structures. There were also improvements proposed in analogy to $k$-WL test ($k>1$). However, the aggregators in these GNNs are far from injective as required by the WL test, and suffer from weak distinguishing strength, making it become expressive bottlenecks. In this paper, we improve the expressiveness by exploring powerful aggregators. We reformulate aggregation with the corresponding aggregation coefficient matrix, and then systematically analyze the requirements of the aggregation coefficient matrix for building more powerful aggregators and even injective aggregators. It can also be viewed as the strategy for preserving the rank of hidden features, and implies that basic aggregators correspond to a special case of low-rank transformations. We also show the necessity of applying nonlinear units ahead of aggregation, which is different from most aggregation-based GNNs. Based on our theoretical analysis, we develop two GNN layers, ExpandingConv and CombConv. Experimental results show that our models significantly boost performance, especially for large and densely connected graphs.
107 - Florian Stelzer 2021
The method recently introduced in arXiv:2011.10115 realizes a deep neural network with just a single nonlinear element and delayed feedback. It is applicable for the description of physically implemented neural networks. In this work, we present an infinite-dimensional generalization, which allows for a more rigorous mathematical analysis and a higher flexibility in choosing the weight functions. Precisely speaking, the weights are described by Lebesgue integrable functions instead of step functions. We also provide a functional back-propagation algorithm, which enables gradient descent training of the weights. In addition, with a slight modification, our concept realizes recurrent neural networks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا