Do you want to publish a course? Click here

Configuration Testing: Testing Configuration Values as Code and with Code

74   0   0.0 ( 0 )
 Added by Tianyin Xu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This paper proposes configuration testing--evaluating configuration values (to be deployed) by exercising the code that uses the values and assessing the corresponding program behavior. We advocate that configuration values should be systematically tested like software code and that configuration testing should be a key reliability engineering practice for preventing misconfigurations from production deployment. The essential advantage of configuration testing is to put the configuration values (to be deployed) in the context of the target software program under test. In this way, the dynamic effects of configuration values and the impact of configuration changes can be observed during testing. Configuration testing overcomes the fundamental limitations of de facto approaches to combatting misconfigurations, namely configuration validation and software testing--the former is disconnected from code logic and semantics, while the latter can hardly cover all possible configuration values and their combinations. Our preliminary results show the effectiveness of configuration testing in capturing real-world misconfigurations. We present the principles of writing new configuration tests and the promises of retrofitting existing software tests to be configuration tests. We discuss new adequacy and quality metrics for configuration testing. We also explore regression testing techniques to enable incremental configuration testing during continuous integration and deployment in modern software systems.



rate research

Read More

Combinatorial interaction testing (CIT) is a useful testing technique to address the interaction of input parameters in software systems. In many applications, the technique has been used as a systematic sampling technique to sample the enormous possibilities of test cases. In the last decade, most of the research activities focused on the generation of CIT test suites as it is a computationally complex problem. Although promising, less effort has been paid for the application of CIT. In general, to apply the CIT, practitioners must identify the input parameters for the Software-under-test (SUT), feed these parameters to the CIT tool to generate the test suite, and then run those tests on the application with some pass and fail criteria for verification. Using this approach, CIT is used as a black-box testing technique without knowing the effect of the internal code. Although useful, practically, not all the parameters having the same impact on the SUT. This paper introduces a different approach to use the CIT as a gray-box testing technique by considering the internal code structure of the SUT to know the impact of each input parameter and thus use this impact in the test generation stage. We applied our approach to five reliable case studies. The results showed that this approach would help to detect new faults as compared to the equal impact parameter approach.
80 - Yixiao Yang 2020
In the field of software engineering, applying language models to the token sequence of source code is the state-of-art approach to build a code recommendation system. The syntax tree of source code has hierarchical structures. Ignoring the characteristics of tree structures decreases the model performance. Current LSTM model handles sequential data. The performance of LSTM model will decrease sharply if the noise unseen data is distributed everywhere in the test suite. As code has free naming conventions, it is common for a model trained on one project to encounter many unknown words on another project. If we set many unseen words as UNK just like the solution in natural language processing, the number of UNK will be much greater than the sum of the most frequently appeared words. In an extreme case, just predicting UNK at everywhere may achieve very high prediction accuracy. Thus, such solution cannot reflect the true performance of a model when encountering noise unseen data. In this paper, we only mark a small number of rare words as UNK and show the prediction performance of models under in-project and cross-project evaluation. We propose a novel Hierarchical Language Model (HLM) to improve the robustness of LSTM model to gain the capacity about dealing with the inconsistency of data distribution between training and testing. The newly proposed HLM takes the hierarchical structure of code tree into consideration to predict code. HLM uses BiLSTM to generate embedding for sub-trees according to hierarchies and collects the embedding of sub-trees in context to predict next code. The experiments on inner-project and cross-project data sets indicate that the newly proposed Hierarchical Language Model (HLM) performs better than the state-of-art LSTM model in dealing with the data inconsistency between training and testing and achieves averagely 11.2% improvement in prediction accuracy.
To accelerate software development, much research has been performed to help people understand and reuse the huge amount of available code resources. Two important tasks have been widely studied: code retrieval, which aims to retrieve code snippets relevant to a given natural language query from a code base, and code annotation, where the goal is to annotate a code snippet with a natural language description. Despite their advancement in recent years, the two tasks are mostly explored separately. In this work, we investigate a novel perspective of Code annotation for Code retrieval (hence called `CoaCor), where a code annotation model is trained to generate a natural language annotation that can represent the semantic meaning of a given code snippet and can be leveraged by a code retrieval model to better distinguish relevant code snippets from others. To this end, we propose an effective framework based on reinforcement learning, which explicitly encourages the code annotation model to generate annotations that can be used for the retrieval task. Through extensive experiments, we show that code annotations generated by our framework are much more detailed and more useful for code retrieval, and they can further improve the performance of existing code retrieval models significantly.
We explore the applicability of Graph Neural Networks in learning the nuances of source code from a security perspective. Specifically, whether signatures of vulnerabilities in source code can be learned from its graph representation, in terms of relationships between nodes and edges. We create a pipeline we call AI4VA, which first encodes a sample source code into a Code Property Graph. The extracted graph is then vectorized in a manner which preserves its semantic information. A Gated Graph Neural Network is then trained using several such graphs to automatically extract templates differentiating the graph of a vulnerable sample from a healthy one. Our model outperforms static analyzers, classic machine learning, as well as CNN and RNN-based deep learning models on two of the three datasets we experiment with. We thus show that a code-as-graph encoding is more meaningful for vulnerability detection than existing code-as-photo and linear sequence encoding approaches. (Submitted Oct 2019, Paper #28, ICST)
In this paper, our aim is to propose a model for code abstraction, based on abstract interpretation, allowing us to improve the precision of a recently proposed static analysis by abstract interpretation of dynamic languages. The problem we tackle here is that the analysis may add some spurious code to the string-to-execute abstract value and this code may need some abstract representations in order to make it analyzable. This is precisely what we propose here, where we drive the code abstraction by the analysis we have to perform.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا