No Arabic abstract
Photo-excitation is a very powerful way to instantaneously drive a material into a novel quantum state without any fabrication, and variable ultrafast techniques have been developed to observe how electron-, lattice-, and spin-degrees of freedom change. One of the most spectacular phenomena is photo-induced superconductivity, and it has been suggested in cuprates that the transition temperature Tc can be enhanced from original Tc with significant lattice modulations. Here we show another photo-induced high-Tc superconducting state in the iron-based superconductor FeSe with semi-metallic hole and electron bands. The transient electronic state in the entire Brillouin zone is directly observed by the time- and angle-resolved photoemission spectroscopy using extreme ultraviolet pulses obtained from high harmonic generation. Our results of dynamical behaviors on timescales from 50 fs to 800 ps consistently support the favorable superconducting state after photo-excitation well above Tc. This finding demonstrates that multiband iron-based superconductors emerge as an alternative candidate for photo-induced superconductors.
We have performed high-resolution angle-resolved photoemission spectroscopy on FeSe superconductor (Tc ~ 8 K), which exhibits a tetragonal-to-orthorhombic structural transition at Ts ~ 90 K. At low temperature we found splitting of the energy bands as large as 50 meV at the M point in the Brillouin zone, likely caused by the formation of electronically driven nematic states. This band splitting persists up to T ~ 110 K, slightly above Ts, suggesting that the structural transition is triggered by the electronic nematicity. We have also revealed that at low temperature the band splitting gives rise to a van Hove singularity within 5 meV of the Fermi energy. The present result strongly suggests that this unusual electronic state is responsible for the unconventional superconductivity in FeSe.
Nonequilibrium conditions offer novel routes to superconductivity that are not available at equilibrium. For example, by engineering nonequilibrium electronic populations, pairing may develop between electrons in different energy bands. A concrete proposal has been made to photo-induce superconductivity in a semiconductor, where pairing occurs between electrons in the conduction and valence bands, even for repulsive interactions. Here, we calculate the superfluid density for such a nonequilibrium paired state, and find it to be positive for repulsive interactions and interband pairing. The positivity of the superfluid density implies the stability of the photo-induced superconducting state as well as the existence of the Meissner effect.
The spontaneous appearance of nematicity, a state of matter that breaks rotation but not translation symmetry, is one of the most intriguing property of the iron based superconductors (Fe SC), and has relevance for the cuprates as well. Establishing the critical electronic modes behind nematicity remains however a challenge, because their associated susceptibilities are not easily accessible by conventional probes. Here using FeSe as a model system, and symmetry resolved electronic Raman scattering as a probe, we unravel the presence of critical charge nematic fluctuations near the structural / nematic transition temperature, T$_Ssim$ 90 K. The diverging behavior of the associated nematic susceptibility foretells the presence of a Pomeranchuk instability of the Fermi surface with d-wave symmetry. The excellent scaling between the observed nematic susceptibility and elastic modulus data demonstrates that the structural distortion is driven by this d-wave Pomeranchuk transition. Our results make a strong case for charge induced nematicity in FeSe.
We use high-resolution angle-resolved photoemission spectroscopy to map the three-dimensional momentum dependence of the superconducting gap in FeSe. We find that on both the hole and electron Fermi surfaces, the magnitude of the gap follows the distribution of $d_{yz}$ orbital weight. Furthermore, we theoretically determine the momentum dependence of the superconducting gap by solving the linearized gap equation using a tight binding model which quantitatively describes both the experimental band dispersions and orbital characters. By considering a Fermi surface only including one electron pocket, as observed spectroscopically, we obtain excellent agreement with the experimental gap structure. Our finding of a scaling between the superconducting gap and the $d_{yz}$ orbital weight supports the interpretation of superconductivity mediated by spin-fluctuations in FeSe.
FeSe is an iron-based superconductor of immense current interest due to the large enhancements of Tc that occur when it is pressurized or grown as a single layer on an insulating substrate. Here we report precision measurements of its superconducting electrodynamics, at frequencies of 202 and 658 MHz and at temperatures down to 0.1 K. The quasiparticle conductivity reveals a rapid collapse in scattering on entering the superconducting state that is strongly reminiscent of unconventional superconductors such as cuprates, organics and the heavy fermion material CeCoIn5. At the lowest temperatures the quasiparticle mean free path exceeds 50 micron, a record for a compound superconductor. From the superfluid response we confirm the importance of multiband superconductivity and reveal strong evidence for a finite energy-gap minimum.