Do you want to publish a course? Click here

Spin-Cooling of the Motion of a Trapped Diamond

63   0   0.0 ( 0 )
 Added by Gabriel Hetet
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observing and controlling macroscopic quantum systems has long been a driving force in research on quantum physics. In this endeavor, strong coupling between individual quantum systems and mechanical oscillators is being actively pursued. While both read-out of mechanical motion using coherent control of spin systems and single spin read-out using pristine oscillators have been demonstrated, temperature control of the motion of a macroscopic object using long-lived electronic spins has not been reported. Here, we observe both a spin-dependent torque and spin-cooling of the motion of a trapped microdiamond. Using a combination of microwave and laser excitation enables the spin of nitrogen-vacancy centers to act on the diamond orientation and to cool the diamond libration via a dynamical back-action. Further, driving the system in the non-linear regime, we demonstrate bistability and self-sustained coherent oscillations stimulated by the spin-mechanical coupling, which offers prospects for spin-driven generation of non-classical states of motion. Such a levitating diamond operated as a compass with controlled dissipation has implications in high-precision torque sensing, emulation of the spin-boson problem and probing of quantum phase transitions. In the single spin limit and employing ultra-pure nano-diamonds, it will allow quantum non-demolition read-out of the spin of nitrogen-vacancy centers under ambient conditions, deterministic entanglement between distant individual spins and matter-wave interferometry.



rate research

Read More

Physical systems reach thermal equilibrium through energy exchange with their environment, and for spins in solids the relevant environment is almost always the host lattice in which they sit. However, recent studies motivated by observations from Purcell showed how coupling to a cavity can become the dominant form of relaxation for spins, given suitably strong spin-cavity coupling. In this regime, the cavity electromagnetic field takes over from the lattice as the dominant environment, inviting the prospect of controlling the spin temperature independently from that of the lattice, by engineering a suitable cavity field. Here, we report on precisely such control over spin temperature, illustrating a novel and universal method of electron spin hyperpolarisation. By switching the cavity input between loads at different temperatures we can control the electron spin polarisation, cooling it below the lattice temperature. Our demonstration uses donor spins in silicon coupled to a superconducting micro-resonator and we observe an increase of spin polarisation of over a factor of two. This approach provides general route to signal enhancement in electron spin resonance, or indeed nuclear magnetic resonance through dynamical nuclear spin polarisation (DNP).
We theoretically analyse the cooling dynamics of a high-Q mode of a mechanical resonator, when the structure is also an optical cavity and is coupled with a NV center. The NV center is driven by a laser and interacts with the cavity photon field and with the strain field of the mechanical oscillator, while radiation pressure couples mechanical resonator and cavity field. Starting from the full master equation we derive the rate equation for the mechanical resonators motion, whose coefficients depend on the system parameters and on the noise sources. We then determine the cooling regime, the cooling rate, the asymptotic temperatures, and the spectrum of resonance fluorescence for experimentally relevant parameter regimes. For these parameters, we consider an electronic transition, whose linewidth allows one to perform sideband cooling, and show that the addition of an optical cavity in general does not improve the cooling efficiency. We further show that pure dephasing of the NV centers electronic transitions can lead to an improvement of the cooling efficiency.
Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopic spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing.
The uncontrolled interaction of a quantum system with its environment is detrimental for quantum coherence. In the context of solid-state qubits, techniques to mitigate the impact of fluctuating electric and magnetic fields from the environment are well-developed. In contrast, suppression of decoherence from thermal lattice vibrations is typically achieved only by lowering the temperature of operation. Here, we use a nano-electro-mechanical system (NEMS) to mitigate the effect of thermal phonons on a solid-state quantum emitter without changing the system temperature. We study the silicon-vacancy (SiV) colour centre in diamond which has optical and spin transitions that are highly sensitive to phonons. First, we show that its electronic orbitals are highly susceptible to local strain, leading to its high sensitivity to phonons. By controlling the strain environment, we manipulate the electronic levels of the emitter to probe, control, and eventually, suppress its interaction with the thermal phonon bath. Strain control allows for both an impressive range of optical tunability and significantly improved spin coherence. Finally, our findings indicate that it may be possible to achieve strong coupling between the SiV spin and single phonons, which can lead to the realisation of phonon-mediated quantum gates and nonlinear quantum phononics.
We demonstrate operation of a rotation sensor based on the $^{14}$N nuclear spins intrinsic to nitrogen-vacancy (NV) color centers in diamond. The sensor employs optical polarization and readout of the nuclei and a radio-frequency double-quantum pulse protocol that monitors $^{14}$N nuclear spin precession. This measurement protocol suppresses the sensitivity to temperature variations in the $^{14}$N quadrupole splitting, and it does not require microwave pulses resonant with the NV electron spin transitions. The device was tested on a rotation platform and demonstrated a sensitivity of 4.7 $^{circ}/sqrt{rm{s}}$ (13 mHz/$sqrt{rm{Hz}}$), with bias stability of 0.4 $^{circ}$/s (1.1 mHz).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا