Do you want to publish a course? Click here

An upper bound on the time required to implement unitary operations

56   0   0.0 ( 0 )
 Added by Christian Arenz
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive an upper bound for the time needed to implement a generic unitary transformation in a $d$ dimensional quantum system using $d$ control fields. We show that given the ability to control the diagonal elements of the Hamiltonian, which allows for implementing any unitary transformation under the premise of controllability, the time $T$ needed is upper bounded by $Tleq frac{pi d^{2}(d-1)}{2g_{text{min}}}$ where $g_{text{min}}$ is the smallest coupling constant present in the system. We study the tightness of the bound by numerically investigating randomly generated systems, with specific focus on a system consisting of $d$ energy levels that interact in a tight-binding like manner.



rate research

Read More

49 - Shingo Kukita 2019
Simultaneous estimation of multiple parameters is required in many practical applications. A lower bound on the variance of simultaneous estimation is given by the quantum Fisher information matrix. This lower bound is, however, not necessarily achievable. There exists a necessary and sufficient condition for its achievability. It is unknown how many parameters can be estimated while satisfying this condition. In this paper, we analyse an upper bound on the number of such parameters through linear-algebraic techniques. This upper bound depends on the algebraic structure of the quantum system used as a probe. We explicitly calculate this bound for two quantum systems: single qubit and two-qubit X-states.
112 - A. Borras , A. Majtey , M. Casas 2008
We review the generation of random pure states using a protocol of repeated two qubit gates. We study the dependence of the convergence to states with Haar multipartite entanglement distribution. We investigate the optimal generation of such states in terms of the physical (real) time needed to apply the protocol, instead of the gate complexity point of view used in other works. This physical time can be obtained, for a given Hamiltonian, within the theoretical framework offered by the quantum brachistochrone formalism. Using an anisotropic Heisenberg Hamiltonian as an example, we find that different optimal quantum gates arise according to the optimality point of view used in each case. We also study how the convergence to random entangled states depends on different entanglement measures.
154 - J. Novotny , G. Alber , I. Jex 2009
We analyze the asymptotic dynamics of quantum systems resulting from large numbers of iterations of random unitary operations. Although, in general, these quantum operations cannot be diagonalized it is shown that their resulting asymptotic dynamics is described by a diagonalizable superoperator. We prove that this asymptotic dynamics takes place in a typically low dimensional attractor space which is independent of the probability distribution of the unitary operations applied. This vector space is spanned by all eigenvectors of the unitary operations involved which are associated with eigenvalues of unit modulus. Implications for possible asymptotic dynamics of iterated random unitary operations are presented and exemplified in an example involving random controlled-not operations acting on two qubits.
108 - Ilia Krasikov 2006
Let ${bf P}_k^{(alpha, beta)} (x)$ be an orthonormal Jacobi polynomial of degree $k.$ We will establish the following inequality begin{equation*} max_{x in [delta_{-1},delta_1]}sqrt{(x- delta_{-1})(delta_1-x)} (1-x)^{alpha}(1+x)^{beta} ({bf P}_{k}^{(alpha, beta)} (x))^2 < frac{3 sqrt{5}}{5}, end{equation*} where $delta_{-1}<delta_1$ are appropriate approximations to the extreme zeros of ${bf P}_k^{(alpha, beta)} (x) .$ As a corollary we confirm, even in a stronger form, T. Erd{e}lyi, A.P. Magnus and P. Nevai conjecture [Erd{e}lyi et al., Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials, SIAM J. Math. Anal. 25 (1994), 602-614], by proving that begin{equation*} max_{x in [-1,1]}(1-x)^{alpha+{1/2}}(1+x)^{beta+{1/2}}({bf P}_k^{(alpha, beta)} (x))^2 < 3 alpha^{1/3} (1+ frac{alpha}{k})^{1/6}, end{equation*} in the region $k ge 6, alpha, beta ge frac{1+ sqrt{2}}{4}.$
81 - Scott M. Cohen 2019
Given a protocol ${cal P}$ that implements multipartite quantum channel ${cal E}$ by repeated rounds of local operations and classical communication (LOCC), we construct an alternate LOCC protocol for ${cal E}$ in no more rounds than ${cal P}$ and no more than a fixed, constant number of outcomes for each local measurement, the same constant number for every party and every round. We then obtain another upper bound on the number of outcomes that, under certain conditions, improves on the first. The latter bound shows that for LOCC channels that are extreme points of the convex set of all quantum channels, the parties can restrict the number of outcomes in their individual local measurements to no more than the square of their local Hilbert space dimension, $d_alpha$, suggesting a possible link between the required resources for LOCC and the convex structure of the set of all quantum channels. Our bounds on the number of outcomes indicating the need for only constant resources per round, independent of the number of rounds $r$ including when that number is infinite, are a stark contrast to the exponential $r$-dependence in the only previously published bound of which we are aware. If a lower bound is known on the number of product operators needed to represent the channel, we obtain a lower bound on the number of rounds required to implement the given channel by LOCC. Finally, we show that when the quantum channel is not required but only that a given task be implemented deterministically, then no more than $d_alpha^2$ outcomes are needed for each local measurement by party $alpha$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا