Do you want to publish a course? Click here

The Molecular Gas Reservoirs of $zsim 2$ Galaxies: A comparison of CO(1-0) and dust-based molecular gas masses

104   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We test the use of long-wavelength dust continuum emission as a molecular gas tracer at high redshift, via a unique sample of 12, z~2 galaxies with observations of both the dust continuum and CO(1-0) line emission (obtained with the Atacama Large Millimeter Array and Karl G. Jansky Very Large Array, respectively). Our work is motivated by recent, high redshift studies that measure molecular gas masses (ensuremath{rm{M}_{rm{mol}}}) via a calibration of the rest-frame $850mu$m luminosity ($L_mathrm{850mu m,rest}$) against the CO(1-0)-derived ensuremath{rm{M}_{rm{mol}}} of star-forming galaxies. We hereby test whether this method is valid for the types of high-redshift, star-forming galaxies to which it has been applied. We recover a clear correlation between the rest-frame $850mu$m luminosity, inferred from the single-band, long-wavelength flux, and the CO(1-0) line luminosity, consistent with the samples used to perform the $850mu$m calibration. The molecular gas masses, derived from $L_mathrm{850mu m,rest}$, agree to within a factor of two with those derived from CO(1-0). We show that this factor of two uncertainty can arise from the values of the dust emissivity index and temperature that need to be assumed in order to extrapolate from the observed frequency to the rest-frame at 850$mathrm{mu m}$. The extrapolation to 850$mathrm{mu m}$ therefore has a smaller effect on the accuracy of Mmol derived via single-band dust-continuum observations than the assumed CO(1-0)-to-ensuremath{rm{M}_{rm{mol}}} conversion factor. We therefore conclude that single-band observations of long-wavelength dust emission can be used to reliably constrain the molecular gas masses of massive, star-forming galaxies at $zgtrsim2$.



rate research

Read More

We report the detection of CO(1-0) emission in the strongly lensed high-redshift quasars IRAS F10214+4724 (z=2.286), the Cloverleaf (z=2.558), RX J0911+0551 (z=2.796), SMM J04135+10277 (z=2.846), and MG 0751+2716 (z=3.200), using the Expanded Very Large Array and the Green Bank Telescope. We report lensing-corrected CO(1-0) line luminosities of L(CO) = 0.34-18.4 x 10^10 K km/s pc^2 and total molecular gas masses of M(H2) = 0.27-14.7 x 10^10 Msun for the sources in our sample. Based on CO line ratios relative to previously reported observations in J>=3 rotational transitions and line excitation modeling, we find that the CO(1-0) line strengths in our targets are consistent with single, highly-excited gas components with constant brightness temperature up to mid-J levels. We thus do not find any evidence for luminous extended, low excitation, low surface brightness molecular gas components. These properties are comparable to those found in z>4 quasars with existing CO(1-0) observations. These findings stand in contrast to recent CO(1-0) observations of z~2-4 submillimeter galaxies (SMGs), which have lower CO excitation and show evidence for multiple excitation components, including some low-excitation gas. These findings are consistent with the picture that gas-rich quasars and SMGs represent different stages in the early evolution of massive galaxies.
We present new ALMA observations aimed at mapping molecular gas reservoirs through the CO(3-2) transition in three quasars at $zsimeq2.4$, LBQS 0109+0213, 2QZ J002830.4-281706, and [HB89] 0329-385. Previous [OIII]5007 observations of these quasars showed evidence for ionised outflows quenching star formation in their host galaxies. Systemic CO(3-2) emission has been detected only in one quasar, LBQS 0109+0213, where the CO(3-2) emission is spatially anti-correlated with the ionised outflow, suggesting that most of the molecular gas may have been dispersed or heated in the region swept by the outflow. In all three sources, including the one detected in CO, our constraints on the molecular gas mass indicate a significantly reduced reservoir compared to main-sequence galaxies at the same redshift, supporting a negative feedback scenario. In the quasar 2QZ J002830.4-281706, we tentatively detect an emission line blob blue-shifted by $vsim-2000$ km/s with respect to the galaxy systemic velocity and spatially offset by 0.2 arcsec (1.7 kpc) with respect to the ALMA continuum peak. Interestingly, such emission feature is coincident in both velocity and space with the ionised outflow as seen in [OIII]5007. This tentative detection must be confirmed with deeper observations but, if real, it could represent the molecular counterpart of the ionised gas outflow driven by the AGN. Finally, in all ALMA maps we detect the presence of serendipitous line emitters within a projected distance $sim 160$ kpc from the quasars. By identifying these features with the CO(3-2) transition, the serendipitous line emitters would be located within |$Delta v$|$<$500 km/s from the quasars, hence suggesting an overdensity of galaxies in two out of three quasars.
We present an extremely deep CO(1-0) observation of a confirmed $z=1.62$ galaxy cluster. We detect two spectroscopically confirmed cluster members in CO(1-0) with $S/N>5$. Both galaxies have log(${cal M_{star}}$/msol)$>11$ and are gas rich, with ${cal M}_{rm mol}$/(${cal M_{star}}+{cal M}_{rm mol}$)$sim 0.17-0.45$. One of these galaxies lies on the star formation rate (SFR)-${cal M_{star}}$ sequence while the other lies an order of magnitude below. We compare the cluster galaxies to other SFR-selected galaxies with CO measurements and find that they have CO luminosities consistent with expectations given their infrared luminosities. We also find that they have comparable gas fractions and star formation efficiencies (SFE) to what is expected from published field galaxy scaling relations. The galaxies are compact in their stellar light distribution, at the extreme end for all high redshift star-forming galaxies. However, their SFE is consistent with other field galaxies at comparable compactness. This is similar to two other sources selected in a blind CO survey of the HDF-N. Despite living in a highly quenched proto-cluster core, the molecular gas properties of these two galaxies, one of which may be in the processes of quenching, appear entirely consistent with field scaling relations between the molecular gas content, stellar mass, star formation rate, and redshift. We speculate that these cluster galaxies cannot have any further substantive gas accretion if they are to become members of the dominant passive population in $z<1$ clusters.
We present CO(1-0) observations of the high-redshift quasi-stellar objects (QSOs) BR 1202-0725 (z=4.69), PSS J2322+1944 (z=4.12), and APM 08279+5255 (z=3.91) using the NRAO Green Bank Telescope (GBT) and the MPIfR Effelsberg 100m telescope. We detect, for the first time, the CO ground-level transition in BR 1202-0725. For PSS J2322+1944 and APM 08279+5255, our observations result in line fluxes that are consistent with previous NRAO Very Large Array (VLA) observations, but they reveal the full line profiles. We report a typical lensing-corrected velocity-integrated intrinsic CO(1-0) line luminosity of L(CO) = 5 x 10^10 K km/s pc^2 and a typical total H_2 mass of M(H2) = 4 x 10^10 M_sun for the sources in our sample. The CO/FIR luminosity ratios of these high-z sources follow the same trend as seen for low-z galaxies, leading to a combined solution of log(L_FIR) = (1.39 +/- 0.05) x log(L(CO))-1.76. It has previously been suggested that the molecular gas reservoirs in some quasar host galaxies may exhibit luminous, extended CO(1-0) components that are not observed in the higher-J CO transitions. Utilizing the line profiles and the total intensities of our observations and large velocity gradient (LVG) models based on previous results for higher-J CO transitions, we derive that emission from all CO transitions is described well by a single gas component where all molecular gas is concentrated in a compact nuclear region. Thus, our observations and models show no indication of a luminous extended, low surface brightness molecular gas component in any of the high-redshift QSOs in our sample. If such extended components exist, their contribution to the overall luminosity is limited to at most 30%.
249 - K. Decker French 2015
Post-starburst (or E+A) galaxies are characterized by low H$alpha$ emission and strong Balmer absorption, suggesting a recent starburst, but little current star formation. Although many of these galaxies show evidence of recent mergers, the mechanism for ending the starburst is not yet understood. To study the fate of the molecular gas, we search for CO (1-0) and (2-1) emission with the IRAM 30m and SMT 10m telescopes in 32 nearby ($0.01<z<0.12$) post-starburst galaxies drawn from the Sloan Digital Sky Survey. We detect CO in 17 (53%). Using CO as a tracer for molecular hydrogen, and a Galactic conversion factor, we obtain molecular gas masses of $M(H_2)=10^{8.6}$-$10^{9.8} M_odot$ and molecular gas mass to stellar mass fractions of $sim10^{-2}$-$10^{-0.5}$, comparable to those of star-forming galaxies. The large amounts of molecular gas rule out complete gas consumption, expulsion, or starvation as the primary mechanism that ends the starburst in these galaxies. The upper limits on $M(H_2)$ for the 15 undetected galaxies range from $10^{7.7} M_odot$ to $10^{9.7} M_odot$, with the median more consistent with early-type galaxies than with star-forming galaxies. Upper limits on the post-starburst star formation rates (SFRs) are lower by $sim10times$ than for star-forming galaxies with the same $M(H_2)$. We also compare the molecular gas surface densities ($Sigma_{rm H_2}$) to upper limits on the SFR surface densities ($Sigma_{rm SFR}$), finding a significant offset, with lower $Sigma_{rm SFR}$ for a given $Sigma_{rm H_2}$ than is typical for star-forming galaxies. This offset from the Kennicutt-Schmidt relation suggests that post-starbursts have lower star formation efficiency, a low CO-to-H$_2$ conversion factor characteristic of ULIRGs, and/or a bottom-heavy initial mass function, although uncertainties in the rate and distribution of current star formation remain.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا