Do you want to publish a course? Click here

The molecular gas content of shell galaxies

198   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Shells are fine stellar structures identified by their arc-like shapes present around a galaxy and currently thought to be vestiges of galaxy interactions and/or mergers. The study of their number, geometry, stellar populations and gas content can help to derive the interaction/merger history of a galaxy. Numerical simulations have proposed a mechanism of shell formation through phase wrapping during a radial minor merger. Alternatively, there could be barely a space wrapping, when particles have not made any radial oscillation yet, but are bound by their radial expansion, or produce an edge-brightened feature. These can be distinguished, because they are expected to keep a high radial velocity. While shells are first a stellar phenomenon, HI and CO observations have revealed neutral gas associated with shells. Some of the gas, the most diffuse and dissipative, is expected to be driven quickly to the center if it is travelling on nearly radial orbits. Molecular gas, distributed in dense clumps, is less dissipative, and may be associated to shells, and determine their velocity, too difficult to obtain from stars. We present here a search for molecular gas in nine shell galaxies with the IRAM-30m telescope. Six of them are detected in their galaxy center, and in three galaxies, we clearly detect molecular gas in shells. The derived amount of molecular gas varies from 1.5 10$^8$ to 3.4 10$^9$ M$_odot$ in the shells. For two of them (Arp 10 and NGC 3656), the shells are characteristic of an oblate system. Their velocity is nearly systemic, and we conclude that these shells are phase-wrapped. For the third one (NGCB3934) the shells appear to participate to the rotation, and follow up with higher spatial resolution is required to conclude.



rate research

Read More

In the disks of four jellyfish galaxies from the GASP sample at redshift $sim 0.05$ we detect molecular gas masses systematically higher than in field galaxies. These galaxies are being stripped of their gas by ram pressure from the intra cluster medium and are, in general, forming stars at high rate with respect to non-stripped galaxies of similar stellar masses. We find that, unless giant molecular clouds in the disk are unbound by ram pressure leading to exceptionally high CO--to--$rm H_2$ conversion factors, these galaxies have a molecular gas content 4-5 times higher than normal galaxies of similar masses, and molecular gas depletion times ranging from $sim$1 to 9 Gyr, corresponding to generally very low star formation efficiencies. The molecular gas mass within the disk is a factor between 4 and $sim$100 times higher than the neutral gas mass, as opposed to the disks of normal spirals that contain similar amounts of molecular and neutral gas. Intriguingly, the molecular plus neutral total amount of gas is similar to that in normal spiral galaxies of similar stellar mass. These results strongly suggest that ram pressure in disks of galaxies during the jellyfish phase leads to a very efficient conversion of HI into $rm H_2$.
We present a detailed study of the molecular gas content and stellar population properties of three massive galaxies at 1 < z < 1.3 that are in different stages of quenching. The galaxies were selected to have a quiescent optical/near-infrared spectral energy distribution and a relatively bright emission at 24 micron, and show remarkably diverse properties. CO emission from each of the three galaxies is detected in deep NOEMA observations, allowing us to derive molecular gas fractions Mgas/Mstar of 13-23%. We also reconstruct the star formation histories by fitting models to the observed photometry and optical spectroscopy, finding evidence for recent rejuvenation in one object, slow quenching in another, and rapid quenching in the third system. To better constrain the quenching mechanism we explore the depletion times for our sample and other similar samples at z~0.7 from the literature. We find that the depletion times are highly dependent on the method adopted to measure the star formation rate: using the UV+IR luminosity we obtain depletion times about 6 times shorter than those derived using dust-corrected [OII] emission. When adopting the star formation rates from spectral fitting, which are arguably more robust, we find that recently quenched galaxies and star-forming galaxies have similar depletion times, while older quiescent systems have longer depletion times. These results offer new, important constraints for physical models of galaxy quenching.
We study the molecular gas content of 24 star-forming galaxies at $z=3-4$, with a median stellar mass of $10^{9.1}$ M$_{odot}$, from the MUSE Hubble Ultra Deep Field (HUDF) Survey. Selected by their Lyman-alpha-emission and H-band magnitude, the galaxies show an average EW $approx 20$ angstrom, below the typical selection threshold for Lyman Alpha Emitters (EW $> 25$ angstrom), and a rest-frame UV spectrum similar to Lyman Break Galaxies. We use rest-frame optical spectroscopy from KMOS and MOSFIRE, and the UV features observed with MUSE, to determine the systemic redshifts, which are offset from Lyman alpha by 346 km s$^{-1}$, with a 100 to 600 km s$^{-1}$ range. Stacking CO(4-3) and [CI](1-0) (and higher-$J$ CO lines) from the ALMA Spectroscopic Survey of the HUDF (ASPECS), we determine $3sigma$ upper limits on the line luminosities of $4.0times10^{8}$ K km s$^{-1}$pc$^{2}$ and $5.6times10^{8}$ K km s$^{-1}$pc$^{2}$, respectively (for a 300 km s$^{-1}$ linewidth). Stacking the 1.2 mm and 3 mm dust continuum flux densities, we find a $3sigma$ upper limits of 9 $mu$Jy and $1.2$ $mu$Jy, respectively. The inferred gas fractions, under the assumption of a Galactic CO-to-H$_{2}$ conversion factor and gas-to-dust ratio, are in tension with previously determined scaling relations. This implies a substantially higher $alpha_{rm CO} ge 10$ and $delta_{rm GDR} ge 1200$, consistent with the sub-solar metallicity estimated for these galaxies ($12 + log(O/H) approx 7.8 pm 0.2$). The low metallicity of $z ge 3$ star-forming galaxies may thus make it very challenging to unveil their cold gas through CO or dust emission, warranting further exploration of alternative tracers, such as [CII].
We study the evolution of the cold gas content of galaxies by splitting the interstellar medium into its atomic and molecular hydrogen components, using the galaxy formation model GALFORM in the LCDM framework. We calculate the molecular-to-atomic hydrogen mass ratio, H2/HI, in each galaxy using two different approaches; the pressure-based empirical relation of Blitz & Rosolowsky and the theoretical model of Krumholz, McKeee & Tumlinson, and apply them to consistently calculate the star formation rates of galaxies. We find that the model based on the Blitz & Rosolowsky law predicts an HI mass function, CO(1-0) luminosity function, correlations between the H2/HI ratio and stellar and cold gas mass, and infrared-CO luminosity relation in good agreement with local and high redshift observations. The HI mass function evolves weakly with redshift, with the number density of high mass galaxies decreasing with increasing redshift. In the case of the H2 mass function, the number density of massive galaxies increases strongly from z=0 to z=2, followed by weak evolution up to z=4. We also find that the H2/HI ratio of galaxies is strongly dependent on stellar and cold gas mass, and also on redshift. The slopes of the correlations between H2/HI and stellar and cold gas mass hardly evolve, but the normalisation increases by up to two orders of magnitude from z=0-8. The strong evolution in the H2 mass function and the H2/HI ratio is primarily due to the evolution in the sizes of galaxies and secondarily, in the gas fractions. The predicted cosmic density evolution of HI agrees with the observed evolution inferred from DLAs, and is dominated by low/intermediate mass halos. We find that previous theoretical studies have largely overestimated the redshift evolution of the global H2/HI ratio due to limited resolution. We predict a maximum of rho_H2/rho_HI~1.2 at z~3.5.
Measurements of the neutral hydrogen gas content of a sample of 93 post-merger galaxies are presented, from a combination of matches to the ALFALFA.40 data release and new Arecibo observations. By imposing completeness thresholds identical to that of the ALFALFA survey, and by compiling a mass-, redshift- and environment-matched control sample from the public ALFALFA.40 data release, we calculate gas fraction offsets (Delta f_gas) for the post-mergers, relative to the control sample. We find that the post-mergers have HI gas fractions that are consistent with undisturbed galaxies. However, due to the relative gas richness of the ALFALFA.40 sample, from which we draw our control sample, our measurements of gas fraction enhancements are likely to be conservative lower limits. Combined with comparable gas fraction measurements by Fertig et al. in a sample of galaxy pairs, who also determine gas fraction offsets consistent with zero, we conclude that there is no evidence for significant neutral gas consumption throughout the merger sequence. From a suite of 75 binary merger simulations we confirm that star formation is expected to decrease the post-merger gas fraction by only 0.06 dex, even several Gyr after the merger. Moreover, in addition to the lack of evidence for gas consumption from gas fraction offsets, the observed HI detection fraction in the complete sample of post-mergers is twice as high as the controls, which suggests that the post-merger gas fractions may actually be enhanced. We demonstrate that a gas fraction enhancement in post-mergers, relative to a stellar mass-matched control sample, would indeed be the natural result of merging randomly drawn pairs from a parent population which exhibits a declining gas fraction with increasing stellar mass.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا