A stellar flare-coronal mass ejection event revealed by X-ray plasma motions


Abstract in English

Coronal mass ejections (CMEs), often associated with flares, are the most powerful magnetic phenomena occurring on the Sun. Stars show magnetic activity levels up to 10^4 times higher, and CME effects on stellar physics and circumstellar environments are predicted to be significant. However, stellar CMEs remain observationally unexplored. Using time-resolved high-resolution X-ray spectroscopy of a stellar flare on the active star HR 9024 observed with Chandra/HETGS, we distinctly detected Doppler shifts in S XVI, Si XIV, and Mg XII lines that indicate upward and downward motions of hot plasmas (~10-25 MK) within the flaring loop, with velocity v~100-400 km/s, in agreement with a model of flaring magnetic tube. Most notably, we also detected a later blueshift in the O VIII line which reveals an upward motion, with v=90+/-30 km/s, of cool plasma (~4 MK), that we ascribe to a CME coupled to the flare. From this evidence we were able to derive a CME mass of 1x10^21 g and a CME kinetic energy of 5x10^34 erg. These values provide clues in the extrapolation of the solar case to higher activity levels, suggesting that CMEs could indeed be a major cause of mass and angular momentum loss.

Download