Do you want to publish a course? Click here

Increasing the efficiency of quantum walk with entangled qubits

53   0   0.0 ( 0 )
 Added by Shahram Panahiyan
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate how arbitrary number of entangled qubits affects properties of quantum walk. We consider variance, positions with non-zero probability density and entropy as criteria to determine the optimal number of entangled qubits in quantum walk. We show that for a single walker in one-dimensional position space, walk with three entangled qubits show better efficiency in considered criteria comparing to the walks with other number of entangled qubits. We also confirm that increment in number of the entangled qubits results into significant drop in variance of probability density distribution of the walker, change from ballistic to diffusive (suppression of quantum propagation), localization over specific step-dependent regions (characteristic of a dynamical Anderson localization) and reduction in entropy on level of reaching the classical walks entropy or even smaller (attain deterministic behavior). In fact, we see that for large number of the entangled qubits, quantum walk loses most of its properties that are celebrated for but still show characterizations which are genuinely diffident comparing to classical walk.



rate research

Read More

In the case of two qubits, standard entanglement monotones like the linear entropy fail to provide an efficient quantum estimation in the regime of weak entanglement. In this paper, a more efficient entanglement estimation, by means of a novel class of entanglement monotones, is proposed. Following an approach based on the geometric formulation of quantum mechanics, these entanglement monotones are defined by inner products on invariant tensor fields on bipartite qubit orbits of the group SU(2)xSU(2).
156 - T. Kiesel , W. Vogel , B. Hage 2010
We experimentally generate and tomographically characterize a mixed, genuinely non-Gaussian bipartite continuous-variable entangled state. By testing entanglement in 2$times$2-dimensional two-qubit subspaces, entangled qubits are localized within the density matrix, which, firstly, proves the distillability of the state and, secondly, is useful to estimate the efficiency and test the applicability of distillation protocols. In our example, the entangled qubits are arranged in the density matrix in an asymmetric way, i.e. entanglement is found between diverse qubits composed of different photon number states, although the entangled state is symmetric under exchanging the modes.
We analyze a special class of 1-D quantum walks (QWs) realized using optical multi-ports. We assume non-perfect multi-ports showing errors in the connectivity, i.e. with a small probability the multi- ports can connect not to their nearest neighbor but to another multi-port at a fixed distance - we call this a jump. We study two cases of QW with jumps where multiple displacements can emerge at one timestep. The first case assumes time-correlated jumps (static disorder). In the second case, we choose the positions of jumps randomly in time (dynamic disorder). The probability distributions of position of the QW walker in both instances differ significantly: dynamic disorder leads to a Gaussian-like distribution, while for static disorder we find two distinct behaviors depending on the parity of jump size. In the case of even-sized jumps, the distribution exhibits a three-peak profile around the position of the initial excitation, whereas the probability distribution in the odd case follows a Laplace-like discrete distribution modulated by additional (exponential) peaks for long times. Finally, our numerical results indicate that by an appropriate mapping an universal functional behavior of the variance of the long-time probability distribution can be revealed with respect to the scaled average of jump size.
Realising a global quantum network requires combining individual strengths of different quantum systems to perform universal tasks, notably using flying and stationary qubits. However, transferring coherently quantum information between different systems is challenging as they usually feature different properties, notably in terms of operation wavelength and wavepacket. To circumvent this problem for quantum photonics systems, we demonstrate a polarisation-preserving quantum frequency conversion device in which telecom wavelength photons are converted to the near infrared, at which a variety of quantum memories operate. Our device is essentially free of noise which we demonstrate through near perfect single photon state transfer tomography and observation of high-fidelity entanglement after conversion. In addition, our guided-wave setup is robust, compact, and easily adaptable to other wavelengths. This approach therefore represents a major building block towards advantageously connecting quantum information systems based on light and matter.
We present a way to transfer maximally- or partially-entangled states of n single-photon-state (SPS) qubits onto n coherent-state (CS) qubits, by employing 2n microwave cavities coupled to a superconducting flux qutrit. The two logic states of a SPS qubit here are represented by the vacuum state and the single-photon state of a cavity, while the two logic states of a CS qubit are encoded with two coherent states of a cavity. Because of using only one superconducting qutrit as the coupler, the circuit architecture is significantly simplified. The operation time for the state transfer does not increase with the increasing of the number of qubits. When the dissipation of the system is negligible, the quantum state can be transferred in a deterministic way since no measurement is required. Furthermore, the higher-energy intermediate level of the coupler qutrit is not excited during the entire operation and thus decoherence from the qutrit is greatly suppressed. As a specific example, we numerically demonstrate that the high-fidelity transfer of a Bell state of two SPS qubits onto two CS qubits is achievable within the present-day circuit QED technology. Finally, it is worthy to note that when the dissipation is negligible, entangled states of n CS qubits can be transferred back onto n SPS qubits by performing reverse operations. This proposal is quite general and can be extended to accomplish the same task, by employing a natural or artificial atom to couple 2n microwave or optical cavities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا