Molecular Beam Epitaxy Grown $Cr_2Te_3$ Thin Films with Tunable Curie Temperatures


Abstract in English

Materials with perpendicular magnetic anisotropy (PMA) effect with high Curie temperature ($T_C$) is essential in applications. In this work, $Cr_2Te_3$ thin films showing PMA with $T_C$ ranging from 165 K to 295 K were successfully grown on $Al_2O_3$ by the molecular beam epitaxy (MBE) technique. The structural analysis, magneto-transport and magnetic characterizations were conducted to study the physical origin of the improved $T_C$. In particular, ferromagnetic (FM) and antiferromagnetic (AFM) ordering competition were investigated. A phenomenological model based on the coupling degree between FM and AFM ordering was proposed to explain the observed $T_C$ enhancement. Our findings indicate that the $T_C$ of $Cr_2Te_3$ thin film can be tuned, which make it hold the potential for various magnetic applications.

Download