Do you want to publish a course? Click here

Covering by homothets and illuminating convex bodies

132   0   0.0 ( 0 )
 Added by Alexey Glazyrin
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The paper is devoted to coverings by translative homothets and illuminations of convex bodies. For a given positive number $alpha$ and a convex body $B$, $g_{alpha}(B)$ is the infimum of $alpha$-powers of finitely many homothety coefficients less than 1 such that there is a covering of $B$ by translative homothets with these coefficients. $h_{alpha}(B)$ is the minimal number of directions such that the boundary of $B$ can be illuminated by this number of directions except for a subset whose Hausdorff dimension is less than $alpha$. In this paper, we prove that $g_{alpha}(B)leq h_{alpha}(B)$, find upper and lower bounds for both numbers, and discuss several general conjectures. In particular, we show that $h_{alpha} (B) > 2^{d-alpha}$ for almost all $alpha$ and $d$ when $B$ is the $d$-dimensional cube, thus disproving the conjecture from Research Problems in Discrete Geometry by Brass, Moser, and Pach.



rate research

Read More

166 - Han Huang , Boaz A. Slomka 2017
Given a Borel measure $mu$ on ${mathbb R}^{n}$, we define a convex set by [ M({mu})=bigcup_{substack{0le fle1, int_{{mathbb R}^{n}}f,{rm d}{mu}=1 } }left{ int_{{mathbb R}^{n}}yfleft(yright),{rm d}{mu}left(yright)right} , ] where the union is taken over all $mu$-measurable functions $f:{mathbb R}^{n}toleft[0,1right]$ with $int_{{mathbb R}^{n}}f,{rm d}{mu}=1$. We study the properties of these measure-generated sets, and use them to investigate natural variations of problems of approximation of general convex bodies by polytopes with as few vertices as possible. In particular, we study an extension of the vertex index which was introduced by Bezdek and Litvak. As an application, we provide a lower bound for certain average norms of centroid bodies of non-degenerate probability measures.
Let $K$ be a convex body in $mathbb{R}^n$ and $f : partial K rightarrow mathbb{R}_+$ a continuous, strictly positive function with $intlimits_{partial K} f(x) d mu_{partial K}(x) = 1$. We give an upper bound for the approximation of $K$ in the symmetric difference metric by an arbitrarily positioned polytope $P_f$ in $mathbb{R}^n$ having a fixed number of vertices. This generalizes a result by Ludwig, Schutt and Werner $[36]$. The polytope $P_f$ is obtained by a random construction via a probability measure with density $f$. In our result, the dependence on the number of vertices is optimal. With the optimal density $f$, the dependence on $K$ in our result is also optimal.
We define a set inner product to be a function on pairs of convex bodies which is symmetric, Minkowski linear in each dimension, positive definite, and satisfies the natural analogue of the Cauchy-Schwartz inequality (which is not implied by the other conditions). We show that any set inner product can be embedded into an inner product space on the associated support functions, thereby extending fundamental results of Hormander and Radstrom. The set inner product provides a geometry on the space of convex bodies. We explore some of the properties of that geometry, and discuss an application of these ideas to the reconstruction of ancestral ecological niches in evolutionary biology.
We study a long standing open problem by Ulam, which is whether the Euclidean ball is the unique body of uniform density which will float in equilibrium in any direction. We answer this problem in the class of origin symmetric n-dimensional convex bodies whose relative density to water is 1/2. For n=3, this result is due to Falconer.
116 - E. Makai , Jr. , H. Martini 2016
Barker and Larman asked the following. Let $K subset {Bbb{R}}^d$ be a convex body, whose interior contains a given convex body $K subset {Bbb{R}}^d$, and let, for all supporting hyperplanes $H$ of $K$, the $(d-1)$-volumes of the intersections $K cap H$ be given. Is $K$ then uniquely determined? Yaskin and Zhang asked the analogous question when, for all supporting hyperplanes $H$ of $K$, the $d$-volumes of the caps cut off from $K$ by $H$ are given. We give local positive answers to both of these questions, for small $C^2$-perturbations of $K$, provided the boundary of $K$ is $C^2_+$. In both cases, $(d-1)$-volumes or $d$-volumes can be replaced by $k$-dimensional quermassintegrals for $1 le k le d-1$ or for $1 le k le d$, respectively. Moreover, in the first case we can admit, rather than hyperplane sections, sections by $l$-dimensional affine planes, where $1 le k le l le d-1$. In fact, here not all $l$-dimensional affine subspaces are needed, but only a small subset of them (actually, a $(d-1)$-manifold), for unique local determination of $K$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا