Edge-contacted superconductor-graphene-superconductor Josephson junction have been utilized to realize topological superconductivity, which have shown superconducting signatures in the quantum Hall regime. We perform the first-principles calculations to interpret electronic couplings at the superconductor-graphene edge contacts by investigating various aspects in hybridization of molybdenum d orbitals and graphene $pi$ orbitals. We also reveal that interfacial oxygen defects play an important role in determining the doping type of graphene near the interface.