Do you want to publish a course? Click here

Recovery and convergence rate of the Frank-Wolfe Algorithm for the m-EXACT-SPARSE Problem

81   0   0.0 ( 0 )
 Added by Farah Cherfaoui
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We study the properties of the Frank-Wolfe algorithm to solve the m-EXACT-SPARSE reconstruction problem, where a signal y must be expressed as a sparse linear combination of a predefined set of atoms, called dictionary. We prove that when the signal is sparse enough with respect to the coherence of the dictionary, then the iterative process implemented by the Frank-Wolfe algorithm only recruits atoms from the support of the signal, that is the smallest set of atoms from the dictionary that allows for a perfect reconstruction of y. We also prove that under this same condition, there exists an iteration beyond which the algorithm converges exponentially.



rate research

Read More

131 - Farah Cherfaoui 2018
In this paper, we study the properties of the Frank-Wolfe algorithm to solve the ExactSparse reconstruction problem. We prove that when the dictionary is quasi-incoherent, at each iteration, the Frank-Wolfe algorithm picks up an atom indexed by the support. We also prove that when the dictionary is quasi-incoherent, there exists an iteration beyond which the algorithm converges exponentially fast.
We develop a novel variant of the classical Frank-Wolfe algorithm, which we call spectral Frank-Wolfe, for convex optimization over a spectrahedron. The spectral Frank-Wolfe algorithm has a novel ingredient: it computes a few eigenvectors of the gradient and solves a small-scale SDP in each iteration. Such procedure overcomes slow convergence of the classical Frank-Wolfe algorithm due to ignoring eigenvalue coalescence. We demonstrate that strict complementarity of the optimization problem is key to proving linear convergence of various algorithms, such as the spectral Frank-Wolfe algorithm as well as the projected gradient method and its accelerated version.
We derive global convergence bounds for the Frank Wolfe algorithm when training one hidden layer neural networks. When using the ReLU activation function, and under tractable preconditioning assumptions on the sample data set, the linear minimization oracle used to incrementally form the solution can be solved explicitly as a second order cone program. The classical Frank Wolfe algorithm then converges with rate $O(1/T)$ where $T$ is both the number of neurons and the number of calls to the oracle.
82 - Lijun Ding , Jicong Fan , 2020
This paper proposes a new variant of Frank-Wolfe (FW), called $k$FW. Standard FW suffers from slow convergence: iterates often zig-zag as update directions oscillate around extreme points of the constraint set. The new variant, $k$FW, overcomes this problem by using two stronger subproblem oracles in each iteration. The first is a $k$ linear optimization oracle ($k$LOO) that computes the $k$ best update directions (rather than just one). The second is a $k$ direction search ($k$DS) that minimizes the objective over a constraint set represented by the $k$ best update directions and the previous iterate. When the problem solution admits a sparse representation, both oracles are easy to compute, and $k$FW converges quickly for smooth convex objectives and several interesting constraint sets: $k$FW achieves finite $frac{4L_f^3D^4}{gammadelta^2}$ convergence on polytopes and group norm balls, and linear convergence on spectrahedra and nuclear norm balls. Numerical experiments validate the effectiveness of $k$FW and demonstrate an order-of-magnitude speedup over existing approaches.
The Frank-Wolfe method and its extensions are well-suited for delivering solutions with desirable structural properties, such as sparsity or low-rank structure. We introduce a new variant of the Frank-Wolfe method that combines Frank-Wolfe steps and steepest descent steps, as well as a novel modification of the Frank-Wolfe gap to measure convergence in the non-convex case. We further extend this method to incorporate in-face directions for preserving structured solutions as well as block coordinate steps, and we demonstrate computational guarantees in terms of the modified Frank-Wolfe gap for all of these variants. We are particularly motivated by the application of this methodology to the training of neural networks with sparse properties, and we apply our block coordinate method to the problem of $ell_1$ regularized neural network training. We present the results of several numerical experiments on both artificial and real datasets demonstrating significant improvements of our method in training sparse neural networks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا