Do you want to publish a course? Click here

De novo exploration and self-guided learning of potential-energy surfaces

100   0   0.0 ( 0 )
 Added by Volker Deringer
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Interatomic potential models based on machine learning (ML) are rapidly developing as tools for materials simulations. However, because of their flexibility, they require large fitting databases that are normally created with substantial manual selection and tuning of reference configurations. Here, we show that ML potentials can be built in a largely automated fashion, exploring and fitting potential-energy surfaces from the beginning (de novo) within one and the same protocol. The key enabling step is the use of a configuration-averaged kernel metric that allows one to select the few most relevant structures at each step. The resulting potentials are accurate and robust for the wide range of configurations that occur during structure searching, despite only requiring a relatively small number of single-point DFT calculations on small unit cells. We apply the method to materials with diverse chemical nature and coordination environments, marking a milestone toward the more routine application of ML potentials in physics, chemistry, and materials science.



rate research

Read More

The lowest-energy structure, distribution of isomers, and their molecular properties depend significantly on the geometry and temperature. The total energy computations under DFT methodology are typically carried out at zero temperature; thereby, entropic contributions to total energy are neglected, even though functional materials work at finite temperature. In the present study, the probability of occurrence of one particular Be$_4$B$_8$ isomer at temperature T is estimated within the framework of quantum statistical mechanics and nanothermodynamics. To locate a list of all possible low-energy chiral and achiral structures, an exhaustive and efficient exploration of the potential/free energy surface is done by employing a multilevel multistep global genetic algorithm search coupled to DFT. Moreover, we discuss the energetic ordering of structures computed at the DFT level against single-point energy calculations at the CCSD(T) level of theory. The computed VCD/IR spectrum of each isomer is multiplied by their corresponding Boltzmann weight at temperature T; then, they are summed together to produce a final Boltzmann weighted spectrum. Additionally, we present chemical bonding analysis using the Adaptive Natural Density Partitioning method in the chiral putative global minimum. The transition state structures and the enantiomer-enantiomer and enantiomer-achiral activation energies as a function of temperature, evidence that a change from an endergonic to an exergonic type of reaction occurs at a temperature of 739 K.
We propose a method to decompose the total energy of a supercell containing defects into contributions of individual atoms, using the energy density formalism within density functional theory. The spatial energy density is unique up to a gauge transformation, and we show that unique atomic energies can be calculated by integrating over Bader and charge-neutral volumes for each atom. Numerically, we implement the energy density method in the framework of the Vienna ab initio simulation package (VASP) for both norm-conserving and ultrasoft pseudopotentials and the projector augmented wave method, and use a weighted integration algorithm to integrate the volumes. The surface energies and point defect energies can be calculated by integrating the energy density over the surface region and the defect region, respectively. We compute energies for several surfaces and defects: the (110) surface energy of GaAs, the mono-vacancy formation energies of Si, the (100) surface energy of Au, and the interstitial formation energy of O in the hexagonal close-packed Ti crystal. The surface and defect energies calculated using our method agree with size-converged calculations of the difference between the total energies of the system with and without the defect. Moreover, the convergence of the defect energies with size can be found from a single calculation.
Machine Learning techniques can be used to represent high-dimensional potential energy surfaces for reactive chemical systems. Two such methods are based on a reproducing kernel Hilbert space representation or on deep neural networks. They can achieve a sub-1 kcal/mol accuracy with respect to reference data and can be used in studies of chemical dynamics. Their construction and a few typical examples are briefly summarized in the present contribution.
The calculation of potential energy surfaces for quantum dynamics can be a time consuming task -- especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior is evaluated for a model function in 2, 3 and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.
Finding amorphous polymers with higher thermal conductivity is important, as they are ubiquitous in heat transfer applications. With recent progress in material informatics, machine learning approaches have been increasingly adopted for finding or designing materials with desired properties. However, relatively limited effort has been put into finding thermally conductive polymers using machine learning, mainly due to the lack of polymer thermal conductivity databases with reasonable data volume. In this work, we combine high-throughput molecular dynamics (MD) simulations and machine learning to explore polymers with relatively high thermal conductivity (> 0.300 W/m-K). We first randomly select 365 polymers from the existing PolyInfo database and calculate their thermal conductivity using MD simulations. The data are then employed to train a machine learning regression model to quantify the structure-thermal conductivity relation, which is further leveraged to screen polymer candidates in the PolyInfo database with thermal conductivity > 0.300 W/m-K. 133 polymers with MD-calculated thermal conductivity above this threshold are eventually identified. Polymers with a wide range of thermal conductivity values are selected for re-calculation under different simulation conditions, and those polymers found with thermal conductivity above 0.300 W/m-K are mostly calculated to maintain values above this threshold despite fluctuation in the exact values. A classification model is also constructed, and similar results were obtained compared to the regression model in predicting polymers with thermal conductivity above or below 0.300 W/m-K. The strategy and results from this work may contribute to automating the design of polymers with high thermal conductivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا