Do you want to publish a course? Click here

A new strategy to microscopic modelling of topological entanglement in polymers based on field theory

62   0   0.0 ( 0 )
 Added by Franco Ferrari
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work a new strategy is proposed in order to build analytic and microscopic models of fluctuating polymer rings subjected to topological constraints. The topological invariants used to fix these constraints belong to a wide class of the so-called numerical topological invariants. For each invariant it is possible to derive a field theory that describes the statistical behavior of knotted and linked polymer rings following a straightforward algorithm. The treatment is not limited to the partition function of the system, but it allows also to express the expectation values of general observables as field theory amplitudes. Our strategy is illustrated taking as examples the Gauss linking number and a topological invariant belonging to a class of invariants due to Massey. The consistency of the new method developed here is checked by reproducing a previous field theoretical model of two linked polymer rings. After the passage to field theory, the original topological constraints imposed on the fluctuating paths of the polymers become constraints over the configurations of the topological fields that mediate the interactions of topological origin between the monomers. These constraints involve quantities like the cross-helicity which are of interest in other disciplines, like for instance in modeling the solar magnetic field. While the calculation of the vacuum expectation values of generic observables remains still challenging due to the complexity of the problem of topological entanglement in polymer systems, we succeed here to reduce the evaluation of the moments of the Gauss linking number for two linked polymer rings to the computation of the amplitudes of a free field theory.



rate research

Read More

We study asymptotic properties of diffusion and other transport processes (including self-avoiding walks and electrical conduction) on large randomly branched polymers using renormalized dynamical field theory. We focus on the swollen phase and the collapse transition, where loops in the polymers are irrelevant. Here the asymptotic statistics of the polymers is that of lattice trees, and diffusion on them is reminiscent of the climbing of a monkey on a tree. We calculate a set of universal scaling exponents including the diffusion exponent and the fractal dimension of the minimal path to 2-loop order and, where available, compare them to numerical results.
We develop a theoretical description of the topological disentanglement occurring when torus knots reach the ends of a semi-flexible polymer under tension. These include decays into simpler knots and total unknotting. The minimal number of crossings and the minimal knot contour length are the topological invariants playing a key role in the model. The crossings behave as particles diffusing along the chain and the application of appropriate boundary conditions at the ends of the chain accounts for the knot disentanglement. Starting from the number of particles and their positions, suitable rules allow reconstructing the type and location of the knot moving on the chain. Our theory is extensively benchmarked with corresponding Molecular Dynamics simulations and the results show a remarkable agreement between the simulations and the theoretical predictions of the model.
We show that the dynamics resulting from preparing a one-dimensional quantum system in the ground state of two decoupled parts, then joined together and left to evolve unitarily with a translational invariant Hamiltonian (a local quench), can be described by means of quantum field theory. In the case when the corresponding theory is conformal, we study the evolution of the entanglement entropy for different bi-partitions of the line. We also consider the behavior of one- and two-point correlation functions. All our findings may be explained in terms of a picture, that we believe to be valid more generally, whereby quasiparticles emitted from the joining point at the initial time propagate semiclassically through the system.
Long linear polymers in strongly disordered media are well described by self-avoiding walks (SAWs) on percolation clusters. The length-distribution of these SAWs encompasses to distinct averages, viz. the averages over cluster- and SAW-conformations. For the latter average, there are two basic options, one being static and one being kinetic. It is well known for static averaging that if the disorder of the underlying medium is weak, differences to the ordered case appear merely in non-universal quantities. Using dynamical field theory, we show that the same holds true for kinetic averaging. For strong disorder, i.e., the medium being close to the percolation point, we employ a field theory for the nonlinear random resistor network in conjunction with a real-world interpretation of Feynman diagrams, and we calculate the scaling exponents for the shortest, the longest and the mean or average SAW to 2-loop order. In addition, we calculate to 2-loop order the entire family of multifractal exponents that governs the moments of the the statistical weights of the elementary constituents (bonds or sites of the underlying fractal cluster) contributing to the SAWs. Our RG analysis reveals that kinetic averaging leads to renormalizability whereas static averaging does not, and hence, we argue that the latter does not lead to a well-defined scaling limit. We discuss the possible implications of this finding for experiments and numerical simulations which have produced wide-spread results for the exponent of the average SAW. To corroborate our results, we also study the well-known Meir-Harris model for SAWs on percolation clusters. We demonstrate that this model leads back to 2-loop order to the renormalizable real world formulation with kinetic averaging if the replica limit is consistently performed at the first possible instant of the calculation.
In this review we provide an organized summary of the theoretical and computational results which are available for polymers subject to spatial or topological constraints. Because of the interdisciplinary character of the topic, we provide an accessible, non-specialist introduction to the main topological concepts, polymer models, and theoretical/computational methods used to investigate dense and entangled polymer systems. The main body of our review deals with: (i) the effect that spatial confinement has on the equilibrium topological entanglement of one or more polymer chains and (ii) the metric and entropic properties of polymer chains with fixed topological state. These problems have important technological applications and implications for the life-sciences. Both aspects, especially the latter, are amply covered. A number of selected open problems are finally highlighted.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا