Do you want to publish a course? Click here

Incorporating Context and External Knowledge for Pronoun Coreference Resolution

76   0   0.0 ( 0 )
 Added by Hongming Zhang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Linking pronominal expressions to the correct references requires, in many cases, better analysis of the contextual information and external knowledge. In this paper, we propose a two-layer model for pronoun coreference resolution that leverages both context and external knowledge, where a knowledge attention mechanism is designed to ensure the model leveraging the appropriate source of external knowledge based on different context. Experimental results demonstrate the validity and effectiveness of our model, where it outperforms state-of-the-art models by a large margin.



rate research

Read More

Resolving pronoun coreference requires knowledge support, especially for particular domains (e.g., medicine). In this paper, we explore how to leverage different types of knowledge to better resolve pronoun coreference with a neural model. To ensure the generalization ability of our model, we directly incorporate knowledge in the format of triplets, which is the most common format of modern knowledge graphs, instead of encoding it with features or rules as that in conventional approaches. Moreover, since not all knowledge is helpful in certain contexts, to selectively use them, we propose a knowledge attention module, which learns to select and use informative knowledge based on contexts, to enhance our model. Experimental results on two datasets from different domains prove the validity and effectiveness of our model, where it outperforms state-of-the-art baselines by a large margin. Moreover, since our model learns to use external knowledge rather than only fitting the training data, it also demonstrates superior performance to baselines in the cross-domain setting.
Pronoun Coreference Resolution (PCR) is the task of resolving pronominal expressions to all mentions they refer to. Compared with the general coreference resolution task, the main challenge of PCR is the coreference relation prediction rather than the mention detection. As one important natural language understanding (NLU) component, pronoun resolution is crucial for many downstream tasks and still challenging for existing models, which motivates us to survey existing approaches and think about how to do better. In this survey, we first introduce representative datasets and models for the ordinary pronoun coreference resolution task. Then we focus on recent progress on hard pronoun coreference resolution problems (e.g., Winograd Schema Challenge) to analyze how well current models can understand commonsense. We conduct extensive experiments to show that even though current models are achieving good performance on the standard evaluation set, they are still not ready to be used in real applications (e.g., all SOTA models struggle on correctly resolving pronouns to infrequent objects). All experiment codes are available at https://github.com/HKUST-KnowComp/PCR.
Open-domain code generation aims to generate code in a general-purpose programming language (such as Python) from natural language (NL) intents. Motivated by the intuition that developers usually retrieve resources on the web when writing code, we explore the effectiveness of incorporating two varieties of external knowledge into NL-to-code generation: automatically mined NL-code pairs from the online programming QA forum StackOverflow and programming language API documentation. Our evaluations show that combining the two sources with data augmentation and retrieval-based data re-sampling improves the current state-of-the-art by up to 2.2% absolute BLEU score on the code generation testbed CoNaLa. The code and resources are available at https://github.com/neulab/external-knowledge-codegen.
No neural coreference resolver for Arabic exists, in fact we are not aware of any learning-based coreference resolver for Arabic since (Bjorkelund and Kuhn, 2014). In this paper, we introduce a coreference resolution system for Arabic based on Lee et als end to end architecture combined with the Arabic version of bert and an external mention detector. As far as we know, this is the first neural coreference resolution system aimed specifically to Arabic, and it substantially outperforms the existing state of the art on OntoNotes 5.0 with a gain of 15.2 points conll F1. We also discuss the current limitations of the task for Arabic and possible approaches that can tackle these challenges.
We apply BERT to coreference resolution, achieving strong improvements on the OntoNotes (+3.9 F1) and GAP (+11.5 F1) benchmarks. A qualitative analysis of model predictions indicates that, compared to ELMo and BERT-base, BERT-large is particularly better at distinguishing between related but distinct entities (e.g., President and CEO). However, there is still room for improvement in modeling document-level context, conversations, and mention paraphrasing. Our code and models are publicly available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا