On the Performance Analysis of Binary Hypothesis Testing with Byzantine Sensors


Abstract in English

We investigate the impact of Byzantine attacks in distributed detection under binary hypothesis testing. It is assumed that a fraction of the transmitted sensor measurements are compromised by the injected data from a Byzantine attacker, whose purpose is to confuse the decision maker at the fusion center. From the perspective of a Byzantine attacker, under the injection energy constraint, an optimization problem is formulated to maximize the asymptotic missed detection error probability, which is based on the Kullback-Leibler divergence. The properties of the optimal attack strategy are analyzed by convex optimization and parametric optimization methods. Based on the derived theoretic results, a coordinate descent algorithm is proposed to search the optimal attack solution. Simulation examples are provided to illustrate the effectiveness of the obtained attack strategy.

Download