Do you want to publish a course? Click here

Realization and identification algorithm for stochastic LPV state-space models with exogenous inputs

60   0   0.0 ( 0 )
 Added by Manas Mejari
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we present a realization and an identification algorithm for stochastic Linear Parameter-Varying State-Space Affine (LPV-SSA) representations. The proposed realization algorithm combines the deterministic LPV input output to LPV state-space realization scheme based on correlation analysis with a stochastic covariance realization algorithm. Based on this realization algorithm, a computationally efficient and statistically consistent identification algorithm is proposed to estimate the LPV model matrices, which are computed from the empirical covariance matrices of outputs, inputs and scheduling signal observations. The effectiveness of the proposed algorithm is shown via a numerical case study.



rate research

Read More

Blind system identification is known to be a hard ill-posed problem and without further assumptions, no unique solution is at hand. In this contribution, we are concerned with the task of identifying an ARX model from only output measurements. Driven by the task of identifying systems that are turned on and off at unknown times, we seek a piecewise constant input and a corresponding ARX model which approximates the measured outputs. We phrase this as a rank minimization problem and present a relaxed convex formulation to approximate its solution. The proposed method was developed to model power consumption of electrical appliances and is now a part of a bigger energy disaggregation framework. Code will be made available online.
Gray-box identification is prevalent in modeling physical and networked systems. However, due to the non-convex nature of the gray-box identification problem, good initial parameter estimates are crucial for a successful application. In this paper, a new identification method is proposed by exploiting the low-rank and structured Hankel matrix of impulse response. This identification problem is recasted into a difference-of-convex programming problem, which is then solved by the sequential convex programming approach with the associated initialization obtained by nuclear-norm optimization. The presented method aims to achieve the maximum impulse-response fitting while not requiring additional (non-convex) conditions to secure non-singularity of the similarity transformation relating the given state-space matrices to the gray-box parameterized ones. This overcomes a persistent shortcoming in a number of recent contributions on this topic, and the new method can be applied for the structured state-space realization even if the involved system parameters are unidentifiable. The method can be used both for directly estimating the gray-box parameters and for providing initial parameter estimates for further iterative search in a conventional gray-box identification setup.
74 - P. den Boef , P. B. Cox , R. Toth 2021
This paper describes the LPVcore software package for MATLAB developed to model, simulate, estimate and control systems via linear parameter-varying (LPV) input-output (IO), state-space (SS) and linear fractional (LFR) representations. In the LPVcore toolbox, basis affine parameter-varying matrix functions are implemented to enable users to represent LPV systems in a global setting, i.e., for time-varying scheduling trajectories. This is a key difference compared to other software suites that use a grid or only LFR-based representations. The paper contains an overview of functions in the toolbox to simulate and identify IO, SS and LFR representations. Based on various prediction-error minimization methods, a comprehensive example is given on the identification of a DC motor with an unbalanced disc, demonstrating the capabilities of the toolbox. The software and examples are available on www.lpvcore.net.
We consider a pair of stochastic integrate and fire neurons receiving correlated stochastic inputs. The evolution of this system can be described by the corresponding Fokker-Planck equation with non-trivial boundary conditions resulting from the refractory period and firing threshold. We propose a finite volume method that is orders of magnitude faster than the Monte Carlo methods traditionally used to model such systems. The resulting numerical approximations are proved to be accurate, nonnegative and integrate to 1. We also approximate the transient evolution of the system using an Ornstein--Uhlenbeck process, and use the result to examine the properties of the joint output of cell pairs. The results suggests that the joint output of a cell pair is most sensitive to changes in input variance, and less sensitive to changes in input mean and correlation.
The identification of structured state-space model has been intensively studied for a long time but still has not been adequately addressed. The main challenge is that the involved estimation problem is a non-convex (or bilinear) optimization problem. This paper is devoted to developing an identification method which aims to find the global optimal solution under mild computational burden. Key to the developed identification algorithm is to transform a bilinear estimation to a rank constrained optimization problem and further a difference of convex programming (DCP) problem. The initial condition for the DCP problem is obtained by solving its convex part of the optimization problem which happens to be a nuclear norm regularized optimization problem. Since the nuclear norm regularized optimization is the closest convex form of the low-rank constrained estimation problem, the obtained initial condition is always of high quality which provides the DCP problem a good starting point. The DCP problem is then solved by the sequential convex programming method. Finally, numerical examples are included to show the effectiveness of the developed identification algorithm.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا