Specialized Decision Surface and Disentangled Feature for Weakly-Supervised Polyphonic Sound Event Detection


Abstract in English

In this paper, a special decision surface for the weakly-supervised sound event detection (SED) and a disentangled feature (DF) for the multi-label problem in polyphonic SED are proposed. We approach SED as a multiple instance learning (MIL) problem and utilize a neural network framework with a pooling module to solve it. General MIL approaches include two kinds: the instance-level approaches and embedding-level approaches. We present a method of generating instance-level probabilities for the embedding level approaches which tend to perform better than the instance-level approaches in terms of bag-level classification but can not provide instance-level probabilities in current approaches. Moreover, we further propose a specialized decision surface (SDS) for the embedding-level attention pooling. We analyze and explained why an embedding-level attention module with SDS is better than other typical pooling modules from the perspective of the high-level feature space. As for the problem of the unbalanced dataset and the co-occurrence of multiple categories in the polyphonic event detection task, we propose a DF to reduce interference among categories, which optimizes the high-level feature space by disentangling it based on class-wise identifiable information and obtaining multiple different subspaces. Experiments on the dataset of DCASE 2018 Task 4 show that the proposed SDS and DF significantly improve the detection performance of the embedding-level MIL approach with an attention pooling module and outperform the first place system in the challenge by 6.6 percentage points.

Download