Atomic-scale manipulation and in situ characterization with scanning tunneling microscopy


Abstract in English

Scanning tunneling microscope (STM) has presented a revolutionary methodology to the nanoscience and nanotechnology. It enables imaging the topography of surfaces, mapping the distribution of electronic density of states, and manipulating individual atoms and molecules, all at the atomic resolution. In particular, the atom manipulation capability has evolved from fabricating individual nanostructures towards the scalable production of the atomic-sized devices bottom-up. The combination of precision synthesis and in situ characterization of the atomically precise structures has enabled direct visualization of many quantum phenomena and fast proof-of-principle testing of quantum device functions with real-time feedback to guide the improved synthesis. In this article, several representative examples are reviewed to demonstrate the recent development of atomic scale manipulation. Especially, the review focuses on the progress that address the quantum properties by design through the precise control of the atomic structures in several technologically relevant materials systems. Besides conventional STM manipulations and electronic structure characterization with single-probe STM, integration of multiple atomically precisely controlled probes in a multiprobe STM system vastly extends the capability of in situ characterization to a new dimension where the charge and spin transport behaviors can be examined from mesoscopic to atomic length scale. The automation of the atomic scale manipulation and the integration with the well-established lithographic processes would further push this bottom-up approach to a new level that combines reproducible fabrication, extraordinary programmability, and the ability to produce large-scale arrays of quantum structures.

Download