Do you want to publish a course? Click here

Modelling the X-ray power spectra of AGN by using reprocessing echoes from an extended corona

62   0   0.0 ( 0 )
 Added by Poemwai Chainakun
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Characteristic signatures that X-ray reverberation from an extended corona can manifest in the observed PSD of AGN are investigated. The presence of two X-ray blobs illuminating an accretion disc can cause the interference between two reprocessing-echo components and produce distinct physical features in the PSD. The oscillatory structures (e.g., dips and humps) are seen but, contrarily to the lamp-post case, the strongest dip is not always the one at the lowest frequency. Instead, we find the frequency where the strongest dip is seen associates to the lower-source height while the lowest frequency where the first dip appears links with the upper-source height. This is because the reverberation timescales increase with the source height. Accurate modelling of the PSD then helps put constraints to the lower and upper limit of the corona extent. Furthermore, the reverberation signatures are less pronounced with increasing number of sources that do not produce reflection (e.g., additional X-rays from fast, relativistic outflows). The amplitude of the oscillations also depends on the amount of dilution contributed by the X-ray sources, thus encodes information about their relative brightness. Due to stronger dilutions, robust detection of these signatures with the current observations will become even more difficult if the corona is extended. Future observations made by Athena will enable us to fit these characteristics in statistically significant details, and to reveal the nature of the disc-corona system.



rate research

Read More

We present simple XSPEC models for fitting excess variance spectra of AGN. Using a simple Monte-Carlo approach, we simulate a range of spectra corresponding to physical parameters varying, then calculate the resulting variance spectra. Starting from a variable power-law, we build up a set of models corresponding to the different physical processes that can affect the final excess variance spectrum. We show that the complex excess variance spectrum of IRAS 13224-3809 can be well described by such an intrinsic variability model, where the power-law variability is damped by relativistic reflection and enhanced by an ultra fast outflow. The reflection flux is correlated with that of the power-law, but not perfectly. We argue that this correlation is stronger at high frequencies, where reverberation lags are detected, while excess variance spectra are typically dominated by low frequency variability.
We report the results of intensive X-ray, UV and optical monitoring of the Seyfert 1 galaxy NGC 4593 with Swift. There is no intrinsic flux-related spectral change in the the variable components in any band with small apparent variations due only to contamination by a second constant component, possibly a (hard) reflection component in the X-rays and the (red) host galaxy in the UV/optical bands. Relative to the shortest wavelength band, UVW2, the lags of the other UV and optical bands are mostly in agreement with the predictions of reprocessing of high energy emission from an accretion disc. The U-band lag is, however, far larger than expected, almost certainly because of reprocessed Balmer continuum emission from the more distant broad line region gas. The UVW2 band is well correlated with the X-rays but lags by ~6x more than expected if the UVW2 results from reprocessing of X-rays on the accretion disc. However, if the lightcurves are filtered to remove variations on timescales >5d, the lag approaches the expectation from disc reprocessing. MEMEcho analysis shows that direct X-rays can be the driver of most of the variations in the UV/optical bands as long as the response functions for those bands all have long tails (up to 10d) in addition to a strong peak (from disc reprocessing) at short lag (<1d). We interpret the tails as due to reprocessing from the surrounding gas. Comparison of X-ray to UVW2 and UVW2 to V-band lags for 4 AGN, including NGC 4593, shows that all have UVW2 to V-band lags which exceed the expectations from disc resprocessing by factor < 2. However the X-ray to UVW2 lags are, mostly, in greater excess from the expectations from disc reprocessing and differ between AGN. The largest excess is in NGC 4151. Absorption and scattering may be affecting X-ray to UV lags.
We present an extended corona model based on ray-tracing simulations to investigate X-ray time lags in Active Galactic Nuclei (AGN). This model consists of two axial point sources illuminating an accretion disc that produce the reverberation lags. These lags are due to the time delays between the directly observed and reflection photons and are associated with the light-travel time between the source and the disc, so they allow us to probe the disc-corona geometry. We assume the variations of two X-ray sources are triggered by the same primary variations, but allow the two sources to respond in different ways (i.e. having different source responses). The variations of each source induce a delayed accretion disc response and the total lags consist of a combination of both source and disc responses. We show that the extended corona model can reproduce both the low-frequency hard and high-frequency soft (reverberation) lags. Fitting the model to the timing data of PG~1244+026 reveals the hard and soft X-ray sources at $sim6r_{text{g}}$ and $sim11r_{text{g}}$, respectively. The upper source produces small amounts of reflection and can be interpreted as a relativistic jet, or outflowing blob, whose emission is beamed away from the disc. This explains the observed lag-energy in which there is no soft lag at energies $<1$~keV as they are diluted by the soft continuum of the upper source. Finally, our models suggest that the fluctuations propagating between the two sources of PG~1244+026 are possible but only at near the speed of light.
The X-ray emission from bright active galactic nuclei (AGNs) is believed to originate in a hot corona lying above a cold, geometrically thin accretion disk. A highly concentrated corona located within $sim10$ gravitational radii above the black hole is inferred from observations. Based on the accretion of interstellar medium/wind, a disk corona model has been proposed in which the corona is well coupled to the disk by radiation, thermal conduction, as well as by mass exchange citep{Liu2015, Qiao2017}. Such a model avoids artificial energy input to the corona and has been used to interpret the spectral features observed in AGN. In this work, it is shown that the bulk emission size of the corona is very small for the extended accretion flow in our model. More than 80% of the hard X-ray power is emitted from a small region confined within 10 Schwarzschild radii around a non-spinning black hole, which is expected to be even smaller accordingly for a spinning black hole. Here, the corona emission is more extended at higher Eddington ratios. The compactness parameter of the corona, $l={Lover R}{sigma_{rm T}over m_{rm e} c^3}$, is shown to be in the range of 1-33 for Eddington ratios of 0.02 - 0.1. Combined with the electron temperature in the corona, this indicates that electron--positron pair production is not dominant in this regime. A positive relation between the compactness parameter and photon index is also predicted. By comparing the above model predictions with observational features, we find that the model is in agreement with observations.
The study of X-ray reprocessing is one of the key diagnostic tools to probe the environment in X-ray binary systems. One difficult aspect of studying X-ray reprocessing is the presence of much brighter primary radiation from the compact star together with the reprocessed radiation. In contrast for eclipsing systems, the X-rays we receive during eclipse are only those produced by reprocessing of the emission from the compact star by the surrounding medium. We report results from a spectral study of the X-ray emission during eclipse and outside eclipse (when available) in 9 high mass X-ray binaries (HMXBs) with XMM- Newton EPIC pn to investigate different aspects of the stellar wind in these HMXBs. During eclipse the continuum component of the spectrum is reduced by a factor of $sim$8-237, but the count-rate for 6.4 keV Iron emission line or complex of Iron emission lines in HMXBs are reduced by a smaller factor leading to large equivalent widths of the Iron emission lines. This indicates a large size for the line emission region, comparable to or larger than the companion star in these HMXB systems. However there are significant system to system differences. 4U 1538$-$52, in spite of having a large absorption column density, shows a soft emission component with comparable flux during the eclipse and out-of-eclipse phases. Emission from Hydrogen-like Iron has been observed in LMC X-4 for the first time, in the out-of-eclipse phase in one of the observations. Overall, we find significant differences in the eclipse spectrum of different HMXBs and also in their eclipse spectra against out-of-eclipse spectra.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا