Do you want to publish a course? Click here

Distributed quantum sensing in a continuous variable entangled network

396   0   0.0 ( 0 )
 Added by Xueshi Guo
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Networking plays a ubiquitous role in quantum technology. It is an integral part of quantum communication and has significant potential for upscaling quantum computer technologies that are otherwise not scalable. Recently, it was realized that sensing of multiple spatially distributed parameters may also benefit from an entangled quantum network. Here we experimentally demonstrate how sensing of an averaged phase shift among four distributed nodes benefits from an entangled quantum network. Using a four-mode entangled continuous variable (CV) state, we demonstrate deterministic quantum phase sensing with a precision beyond what is attainable with separable probes. The techniques behind this result can have direct applications in a number of primitives ranging from biological imaging to quantum networks of atomic clocks.



rate research

Read More

We study a class of mixed non-Gaussian entangled states that, whilst closely related to Gaussian entangled states, none-the-less exhibit distinct properties previously only associated with more exotic, pure non-Gaussian states.
We report a versatile and practical approach for generating high-quality polarization entanglement in a fully guided-wave fashion. Our setup relies on a high-brilliance type-0 waveguide generator producing paired photon at a telecom wavelength associated with an advanced energy-time to polarisation transcriber. The latter is capable of creating any pure polarization entangled state, and allows manipulating single photon bandwidths that can be chosen at will over five orders of magnitude, ranging from tens of MHz to several THz. We achieve excellent entanglement fidelities for particular spectral bandwidths, i.e. 25 MHz, 540 MHz and 100 GHz, proving the relevance of our approach. Our scheme stands as an ideal candidate for a wide range of network applications, ranging from dense division multiplexing quantum key distribution to heralded optical quantum memories and repeaters.
We propose a novel squeezed light source capable of meeting the stringent requirements of continuous variable quantum sampling. Using the effective $chi_2$ interaction induced by a strong driving beam in the presence of the $chi_3$ response in an integrated microresonator, our device is compatible with established nanophotonic fabrication platforms. With typical realistic parameters, squeezed states with a mean photon number of 10 or higher can be generated in a single consistent temporal mode at repetition rates in excess of 100MHz. Over 15dB of squeezing is achievable in existing ultra-low loss platforms.
Quantum teleportation is a primitive in several important applications, including quantum communication, quantum computation, error correction, and quantum networks. In this work, we propose an optimal test for the performance of continuous-variable (CV) quantum teleportation in terms of the energy-constrained channel fidelity between ideal CV teleportation and its experimental implementation. All work prior to ours considered suboptimal tests of the performance of CV teleportation, focusing instead on its performance for particular states, such as ensembles of coherent states, squeezed states, cat states, etc. Here we prove that the optimal state for testing CV teleportation is an entangled superposition of twin-Fock states. We establish this result by reducing the problem of estimating the energy-constrained channel fidelity between ideal CV teleportation and its experimental approximation to a quadratic program and solving it. As an additional result, we obtain an analytical solution to the energy-constrained diamond distance between a photodetector and its experimental approximation. These results are relevant for experiments that make use of CV teleportation and photodetectors.
Phase-randomized optical homodyne detection is a well-known technique for performing quantum state tomography. So far, it has been mainly considered a sophisticated tool for laboratory experiments but unsuitable for practical applications. In this work, we change the perspective and employ this technique to set up a practical continuous-variable quantum random number generator. We exploit a phase-randomized local oscillator realized with a gain-switched laser to bound the min-entropy and extract true randomness from a completely uncharacterized input, potentially controlled by a malicious adversary. Our proof-of-principle implementation achieves an equivalent rate of 270 Mbit/s. In contrast to other source-device-independent quantum random number generators, the one presented herein does not require additional active optical components, thus representing a viable solution for future compact, modulator-free, certified generators of randomness.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا