Optimal extensions of conformal mappings from the unit disk to cardioid-type domains


Abstract in English

The conformal mapping $f(z)=(z+1)^2 $ from $mathbb{D}$ onto the standard cardioid has a homeomorphic extension of finite distortion to entire $mathbb{R}^2 .$ We study the optimal regularity of such extensions, in terms of the integrability degree of the distortion and of the derivatives, and these for the inverse. We generalize all outcomes to the case of conformal mappings from $mathbb{D}$ onto cardioid-type domains.

Download