No Arabic abstract
We prove absolute continuity of the law of the solution, evaluated at fixed points in time and space, to a parabolic dissipative stochastic PDE on $L^2(G)$, where $G$ is an open bounded domain in $mathbb{R}^d$ with smooth boundary. The equation is driven by a multiplicative Wiener noise and the nonlinear drift term is the superposition operator associated to a real function which is assumed to be monotone, locally Lipschitz continuous, and growing not faster than a polynomial. The proof, which uses arguments of the Malliavin calculus, crucially relies on the well-posedness theory in the mild sense for stochastic evolution equations in Banach spaces.
We start by introducing a new definition of solutions to heat-based SPDEs driven by space-time white noise: SDDEs (stochastic differential-difference equations) limits solutions. In contrast to the standard direct definition of SPDEs solutions; this new notion, which builds on and refines our SDDEs approach to SPDEs from earlier work, is entirely based on the approximating SDDEs. It is applicable to, and gives a multiscale view of, a variety of SPDEs. We extend this approach in related work to other heat-based SPDEs (Burgers, Allen-Cahn, and others) and to the difficult case of SPDEs with multi-dimensional spacial variable. We focus here on one-spacial-dimensional reaction-diffusion SPDEs; and we prove the existence of a SDDEs limit solution to these equations under less-than-Lipschitz conditions on the drift and the diffusion coefficients, thus extending our earlier SDDEs work to the nonzero drift case. The regularity of this solution is obtained as a by-product of the existence estimates. The uniqueness in law of our SPDEs follows, for a large class of such drifts/diffusions, as a simple extension of our recent Allen-Cahn uniqueness result. We also examine briefly, through order parameters $epsilon_1$ and $epsilon_2$ multiplied by the Laplacian and the noise, the effect of letting $epsilon_1,epsilon_2to 0$ at different speeds. More precisely, it is shown that the ratio $epsilon_2/epsilon_1^{1/4}$ determines the behavior as $epsilon_1,epsilon_2to 0$.
We study the stability of reaction-diffusion equations in presence of noise. The relationship of stability of solutions between the stochastic ordinary different equations and the corresponding stochastic reaction-diffusion equation is firstly established. Then, by using the Lyapunov method, sufficient conditions for mean square and stochastic stability are given. The results show that the multiplicative noise can make the solution stable, but the additive noise will be not.
We prove that a probability solution of the stationary Kolmogorov equation generated by a first order perturbation $v$ of the Ornstein--Uhlenbeck operator $L$ possesses a highly integrable density with respect to the Gaussian measure satisfying the non-perturbed equation provided that $v$ is sufficiently integrable. More generally, a similar estimate is proved for solutions to inequalities connected with Markov semigroup generators under the curvature condition $CD(theta,infty)$. For perturbations from $L^p$ an analog of the Log-Sobolev inequality is obtained. It is also proved in the Gaussian case that the gradient of the density is integrable to all powers. We obtain dimension-free bounds on the density and its gradient, which also covers the infinite-dimensional case.
Existence and uniqueness of solutions to the stochastic heat equation with multiplicative spatial noise is studied. In the spirit of pathwise regularization by noise, we show that a perturbation by a sufficiently irregular continuous path establish wellposedness of such equations, even when the drift and diffusion coefficients are given as generalized functions or distributions. In addition we prove regularity of the averaged field associated to a Levy fractional stable motion, and use this as an example of a perturbation regularizing the multiplicative stochastic heat equation.
We consider the $[0,1]$-valued solution $(u_{t,x}:tgeq 0, xin mathbb R)$ to the one dimensional stochastic reaction diffusion equation with Wright-Fisher noise [ partial_t u = partial_x^2 u + f(u) + epsilon sqrt{u(1-u)} dot W. ] Here, $W$ is a space-time white noise, $epsilon > 0$ is the noise strength, and $f$ is a continuous function on $[0,1]$ satisfying $sup_{zin [0,1]}|f(z)|/ sqrt{z(1-z)} < infty.$ We assume the initial data satisfies $1 - u_{0,-x} = u_{0,x} = 0$ for $x$ large enough. Recently, it was proved in (Comm. Math. Phys. 384 (2021), no. 2) that the front of $u_t$ propagates with a finite deterministic speed $V_{f,epsilon}$, and under slightly stronger conditions on $f$, the asymptotic behavior of $V_{f,epsilon}$ was derived as the noise strength $epsilon$ approaches $infty$. In this paper we complement the above result by obtaining the asymptotic behavior of $V_{f,epsilon}$ as the noise strength $epsilon$ approaches $0$: for a given $pin [1/2,1)$, if $f(z)$ is non-negative and is comparable to $z^p$ for sufficiently small $z$, then $V_{f,epsilon}$ is comparable to $epsilon^{-2frac{1-p}{1+p}}$ for sufficiently small $epsilon$.