Do you want to publish a course? Click here

Overview of image-to-image translation by use of deep neural networks: denoising, super-resolution, modality conversion, and reconstruction in medical imaging

63   0   0.0 ( 0 )
 Added by Shizuo Kaji
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Since the advent of deep convolutional neural networks (DNNs), computer vision has seen an extremely rapid progress that has led to huge advances in medical imaging. This article does not aim to cover all aspects of the field but focuses on a particular topic, image-to-image translation. Although the topic may not sound familiar, it turns out that many seemingly irrelevant applications can be understood as instances of image-to-image translation. Such applications include (1) noise reduction, (2) super-resolution, (3) image synthesis, and (4) reconstruction. The same underlying principles and algorithms work for various tasks. Our aim is to introduce some of the key ideas on this topic from a uniform point of view. We introduce core ideas and jargon that are specific to image processing by use of DNNs. Having an intuitive grasp of the core ideas of and a knowledge of technical terms would be of great help to the reader for understanding the existing and future applications. Most of the recent applications which build on image-to-image translation are based on one of two fundamental architectures, called pix2pix and CycleGAN, depending on whether the available training data are paired or unpaired. We provide computer codes which implement these two architectures with various enhancements. Our codes are available online with use of the very permissive MIT license. We provide a hands-on tutorial for training a model for denoising based on our codes. We hope that this article, together with the codes, will provide both an overview and the details of the key algorithms, and that it will serve as a basis for the development of new applications.



rate research

Read More

106 - Kai Ye , Yinru Ye , Minqiang Yang 2021
The main challenges of image-to-image (I2I) translation are to make the translated image realistic and retain as much information from the source domain as possible. To address this issue, we propose a novel architecture, termed as IEGAN, which removes the encoder of each network and introduces an encoder that is independent of other networks. Compared with previous models, it embodies three advantages of our model: Firstly, it is more directly and comprehensively to grasp image information since the encoder no longer receives loss from generator and discriminator. Secondly, the independent encoder allows each network to focus more on its own goal which makes the translated image more realistic. Thirdly, the reduction in the number of encoders performs more unified image representation. However, when the independent encoder applies two down-sampling blocks, its hard to extract semantic information. To tackle this problem, we propose deep and shallow information space containing characteristic and semantic information, which can guide the model to translate high-quality images under the task with significant shape or texture change. We compare IEGAN with other previous models, and conduct researches on semantic information consistency and component ablation at the same time. These experiments show the superiority and effectiveness of our architecture. Our code is published on: https://github.com/Elvinky/IEGAN.
163 - Weiya Fan 2020
Fingerprint image denoising is a very important step in fingerprint identification. to improve the denoising effect of fingerprint image,we have designs a fingerprint denoising algorithm based on deep encoder-decoder network,which encoder subnet to learn the fingerprint features of noisy images.the decoder subnet reconstructs the original fingerprint image based on the features to achieve denoising, while using the dilated convolution in the network to increase the receptor field without increasing the complexity and improve the network inference speed. In addition, feature fusion at different levels of the network is achieved through the introduction of residual learning, which further restores the detailed features of the fingerprint and improves the denoising effect. Finally, the experimental results show that the algorithm enables better recovery of edge, line and curve features in fingerprint images, with better visual effects and higher peak signal-to-noise ratio (PSNR) compared to other methods.
Hyperspectral images are of crucial importance in order to better understand features of different materials. To reach this goal, they leverage on a high number of spectral bands. However, this interesting characteristic is often paid by a reduced spatial resolution compared with traditional multispectral image systems. In order to alleviate this issue, in this work, we propose a simple and efficient architecture for deep convolutional neural networks to fuse a low-resolution hyperspectral image (LR-HSI) and a high-resolution multispectral image (HR-MSI), yielding a high-resolution hyperspectral image (HR-HSI). The network is designed to preserve both spatial and spectral information thanks to an architecture from two folds: one is to utilize the HR-HSI at a different scale to get an output with a satisfied spectral preservation; another one is to apply concepts of multi-resolution analysis to extract high-frequency information, aiming to output high quality spatial details. Finally, a plain mean squared error loss function is used to measure the performance during the training. Extensive experiments demonstrate that the proposed network architecture achieves best performance (both qualitatively and quantitatively) compared with recent state-of-the-art hyperspectral image super-resolution approaches. Moreover, other significant advantages can be pointed out by the use of the proposed approach, such as, a better network generalization ability, a limited computational burden, and a robustness with respect to the number of training samples.
Due to the significant information loss in low-resolution (LR) images, it has become extremely challenging to further advance the state-of-the-art of single image super-resolution (SISR). Reference-based super-resolution (RefSR), on the other hand, has proven to be promising in recovering high-resolution (HR) details when a reference (Ref) image with similar content as that of the LR input is given. However, the quality of RefSR can degrade severely when Ref is less similar. This paper aims to unleash the potential of RefSR by leveraging more texture details from Ref images with stronger robustness even when irrelevant Ref images are provided. Inspired by the recent work on image stylization, we formulate the RefSR problem as neural texture transfer. We design an end-to-end deep model which enriches HR details by adaptively transferring the texture from Ref images according to their textural similarity. Instead of matching content in the raw pixel space as done by previous methods, our key contribution is a multi-level matching conducted in the neural space. This matching scheme facilitates multi-scale neural transfer that allows the model to benefit more from those semantically related Ref patches, and gracefully degrade to SISR performance on the least relevant Ref inputs. We build a benchmark dataset for the general research of RefSR, which contains Ref images paired with LR inputs with varying levels of similarity. Both quantitative and qualitative evaluations demonstrate the superiority of our method over state-of-the-art.
Undersampling the k-space data is widely adopted for acceleration of Magnetic Resonance Imaging (MRI). Current deep learning based approaches for supervised learning of MRI image reconstruction employ real-valued operations and representations by treating complex valued k-space/spatial-space as real values. In this paper, we propose complex dense fully convolutional neural network ($mathbb{C}$DFNet) for learning to de-alias the reconstruction artifacts within undersampled MRI images. We fashioned a densely-connected fully convolutional block tailored for complex-valued inputs by introducing dedicated layers such as complex convolution, batch normalization, non-linearities etc. $mathbb{C}$DFNet leverages the inherently complex-valued nature of input k-space and learns richer representations. We demonstrate improved perceptual quality and recovery of anatomical structures through $mathbb{C}$DFNet in contrast to its real-valued counterparts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا