Do you want to publish a course? Click here

Approximation results for makespan minimization with budgeted uncertainty

165   0   0.0 ( 0 )
 Added by Marin Bougeret
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We study approximation algorithms for the problem of minimizing the makespan on a set of machines with uncertainty on the processing times of jobs. In the model we consider, which goes back to~cite{BertsimasS03}, once the schedule is defined an adversary can pick a scenario where deviation is added to some of the jobs processing times. Given only the maximal cardinality of these jobs, and the magnitude of potential deviation for each job, the goal is to optimize the worst-case scenario. We consider both the cases of identical and unrelated machines. Our main result is an EPTAS for the case of identical machines. We also provide a $3$-approximation algorithm and an inapproximability ratio of $2-epsilon$ for the case of unrelated machines



rate research

Read More

We consider the online makespan minimization problem on identical machines. Chen and Vestjens (ORL 1997) show that the largest processing time first (LPT) algorithm is 1.5-competitive. For the special case of two machines, Noga and Seiden (TCS 2001) introduce the SLEEPY algorithm that achieves a competitive ratio of $(5 - sqrt{5})/2 approx 1.382$, matching the lower bound by Chen and Vestjens (ORL 1997). Furthermore, Noga and Seiden note that in many applications one can kill a job and restart it later, and they leave an open problem whether algorithms with restart can obtain better competitive ratios. We resolve this long-standing open problem on the positive end. Our algorithm has a natural rule for killing a processing job: a newly-arrived job replaces the smallest processing job if 1) the new job is larger than other pending jobs, 2) the new job is much larger than the processing one, and 3) the processed portion is small relative to the size of the new job. With appropriate choice of parameters, we show that our algorithm improves the 1.5 competitive ratio for the general case, and the 1.382 competitive ratio for the two-machine case.
81 - Steven Chaplick 2020
We study problems with stochastic uncertainty information on intervals for which the precise value can be queried by paying a cost. The goal is to devise an adaptive decision tree to find a correct solution to the problem in consideration while minimizing the expected total query cost. We show that, for the sorting problem, such a decision tree can be found in polynomial time. For the problem of finding the data item with minimum value, we have some evidence for hardness. This contradicts intuition, since the minimum problem is easier both in the online setting with adversarial inputs and in the offline verification setting. However, the stochastic assumption can be leveraged to beat both deterministic and randomized approximation lower bounds for the online setting.
Motivated by applications in machine learning, such as subset selection and data summarization, we consider the problem of maximizing a monotone submodular function subject to mixed packing and covering constraints. We present a tight approximation algorithm that for any constant $epsilon >0$ achieves a guarantee of $1-frac{1}{mathrm{e}}-epsilon$ while violating only the covering constraints by a multiplicative factor of $1-epsilon$. Our algorithm is based on a novel enumeration method, which unlike previous known enumeration techniques, can handle both packing and covering constraints. We extend the above main result by additionally handling a matroid independence constraints as well as finding (approximate) pareto set optimal solutions when multiple submodular objectives are present. Finally, we propose a novel and purely combinatorial dynamic programming approach that can be applied to several special cases of the problem yielding not only {em deterministic} but also considerably faster algorithms. For example, for the well studied special case of only packing constraints (Kulik {em et. al.} [Math. Oper. Res. `13] and Chekuri {em et. al.} [FOCS `10]), we are able to present the first deterministic non-trivial approximation algorithm. We believe our new combinatorial approach might be of independent interest.
Massive sizes of real-world graphs, such as social networks and web graph, impose serious challenges to process and perform analytics on them. These issues can be resolved by working on a small summary of the graph instead . A summary is a compressed version of the graph that removes several details, yet preserves its essential structure. Generally, some predefined quality measure of the summary is optimized to bound the approximation error incurred by working on the summary instead of the whole graph. All known summarization algorithms are computationally prohibitive and do not scale to large graphs. In this paper we present an efficient randomized algorithm to compute graph summaries with the goal to minimize reconstruction error. We propose a novel weighted sampling scheme to sample vertices for merging that will result in the least reconstruction error. We provide analytical bounds on the running time of the algorithm and prove approximation guarantee for our score computation. Efficiency of our algorithm makes it scalable to very large graphs on which known algorithms cannot be applied. We test our algorithm on several real world graphs to empirically demonstrate the quality of summaries produced and compare to state of the art algorithms. We use the summaries to answer several structural queries about original graph and report their accuracies.
In the budgeted learning problem, we are allowed to experiment on a set of alternatives (given a fixed experimentation budget) with the goal of picking a single alternative with the largest possible expected payoff. Approximation algorithms for this problem were developed by Guha and Munagala by rounding a linear program that couples the various alternatives together. In this paper we present an index for this problem, which we call the ratio index, which also guarantees a constant factor approximation. Index-based policies have the advantage that a single number (i.e. the index) can be computed for each alternative irrespective of all other alternatives, and the alternative with the highest index is experimented upon. This is analogous to the famous Gittins index for the discounted multi-armed bandit problem. The ratio index has several interesting structural properties. First, we show that it can be computed in strongly polynomial time. Second, we show that with the appropriate discount factor, the Gittins index and our ratio index are constant factor approximations of each other, and hence the Gittins index also gives a constant factor approximation to the budgeted learning problem. Finally, we show that the ratio index can be used to create an index-based policy that achieves an O(1)-approximation for the finite horizon version of the multi-armed bandit problem. Moreover, the policy does not require any knowledge of the horizon (whereas we compare its performance against an optimal strategy that is aware of the horizon). This yields the following surprising result: there is an index-based policy that achieves an O(1)-approximation for the multi-armed bandit problem, oblivious to the underlying discount factor.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا