Silent MST approximation for tiny memory


Abstract in English

In this paper we show that approximation can help reduce the space used for self-stabilization. In the classic emph{state model}, where the nodes of a network communicate by reading the states of their neighbors, an important measure of efficiency is the space: the number of bits used at each node to encode the state. In this model, a classic requirement is that the algorithm has to be emph{silent}, that is, after stabilization the states should not change anymore. We design a silent self-stabilizing algorithm for the problem of minimum spanning tree, that has a trade-off between the quality of the solution and the space needed to compute it.

Download