Do you want to publish a course? Click here

Superradiant scattering by a black hole binary

97   0   0.0 ( 0 )
 Added by Leong Khim Wong
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

I present evidence of a novel guise of superradiance that arises in black hole binary spacetimes. Given the right initial conditions, a wave will be amplified as it scatters off the binary. This process, which extracts energy from the orbital motion, is driven by absorption across the horizons and is most pronounced when the individual black holes are not spinning. Focusing on real scalar fields, I demonstrate how modern effective field theory (EFT) techniques enable the computation of the superradiant amplification factor analytically when there exist large separations of scales. Although exploiting these hierarchies inevitably means that the amplification factor is always negligible (it is never larger than about one part in $10^{10}$) in the EFTs regime of validity, this work has interesting theoretical implications for our understanding of general relativity and lays the groundwork for future studies on superradiant phenomena in binary systems.



rate research

Read More

We present a new vacuum solution of Einsteins equations describing the near horizon region of two neutral, extreme (zero-temperature), co-rotating, non-identical Kerr black holes. The metric is stationary, asymptotically near horizon extremal Kerr (NHEK), and contains a localized massless strut along the symmetry axis between the black holes. In the deep infrared, it flows to two separate throats which we call pierced-NHEK geometries: each throat is NHEK pierced by a conical singularity. We find that in spite of the presence of the strut for the pierced-NHEK geometries the isometry group SL(2,R)xU(1) is restored. We find the physical parameters and entropy.
138 - Maxim Dvornikov 2021
We study the neutrino scattering off a rotating black hole with a realistic accretion disk permeated by an intrinsic magnetic field. Neutrino trajectories in curved spacetime as well as the particle spin evolution in dense matter of an accretion disk and in the magnetic field are accounted for exactly. We obtain the fluxes of outgoing ultrarelativistic neutrinos taking into account the change of the neutrino polarization owing to spin oscillations. Using the conservative value of the neutrino magnetic moment and realistic radial distributions of the matter density and the magnetic field strength, we get that these fluxes are reduced by several percent compared to the case when no spin oscillations are accounted for. In some situations, there are spikes in the neutrino fluxes because of the neutrino interaction with the rotating plasma of an accretion disk. Taking into account the uncertainties in the astrophysical neutrino fluxes, the predicted effects turn out to be quite small to be observed with the current neutrino telescopes.
Systems of enhanced memory capacity are subjected to a universal effect of memory burden, which suppresses their decay. In this paper, we study a prototype model to show that memory burden can be overcome by rewriting stored quantum information from one set of degrees of freedom to another one. However, due to a suppressed rate of rewriting, the evolution becomes extremely slow compared to the initial stage. Applied to black holes, this predicts a metamorphosis, including a drastic deviation from Hawking evaporation, at the latest after losing half of the mass. This raises a tantalizing question about the fate of a black hole. As two likely options, it can either become extremely long lived or decay via a new classical instability into gravitational lumps. The first option would open up a new window for small primordial black holes as viable dark matter candidates.
Gravitational-wave astronomy has the potential to substantially advance our knowledge of the cosmos, from the most powerful astrophysical engines to the initial stages of our universe. Gravitational waves also carry information about the nature of black holes. Here we investigate the potential of gravitational-wave detectors to test a proposal by Bekenstein and Mukhanov that the area of black hole horizons is quantized in units of the Planck area. Our results indicate that this quantization could have a potentially observable effect on the classical gravitational wave signals received by detectors. In particular, we find distorted gravitational-wave echoes in the post-merger waveform describing the inspiral and merger of two black holes. These echoes have a specific frequency content that is characteristic of black hole horizon area quantization.
93 - Leong Khim Wong 2020
The use of modern effective field theory techniques has sparked significant developments in many areas of physics, including the study of gravity. Case in point, such techniques have recently been used to show that binary black holes can amplify incident, low-frequency radiation due to an interplay between absorption at the horizons and momentum transfer in the bulk of the spacetime. In this paper, we further examine the consequences of this superradiant mechanism on the dynamics of an ambient scalar field by taking the binarys long-range gravitational potential into account at the nonperturbative level. Doing so allows us to capture the formation of scalar clouds that are gravitationally bound to the binary. If the scalar is light enough, the cloud can be sufficiently diffuse (i.e., dilute while having considerable spatial extent) that it engulfs the binary as a whole. Its subsequent evolution exhibits an immensely rich phenomenology, which includes exponential growth, beating patterns, and the upscattering of bound states into scalar waves. While we find that these effects have negligible influence on the binarys inspiral in the regime wherein our approximations are valid, they offer new, analytic insight into how binary black holes interact with external perturbations. They may also provide useful, qualitative intuition for interpreting the results from future numerical simulations of these complex systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا