Do you want to publish a course? Click here

Precision Measurement of the Weak Charge of the Proton

83   0   0.0 ( 0 )
 Added by Roger Carlini
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The fields of particle and nuclear physics have undertaken extensive programs to search for evidence of physics beyond that explained by current theories. The observation of the Higgs boson at the Large Hadron Collider completed the set of particles predicted by the Standard Model (SM), currently the best description of fundamental particles and forces. However, the theorys limitations include a failure to predict fundamental parameters and the inability to account for dark matter/energy, gravity, and the matter-antimater asymmetry in the universe, among other phenomena. Given the lack of additional particles found so far through direct searches in the post-Higgs era, indirect searches utilizing precise measurements of well predicted SM observables allow highly targeted alternative tests for physics beyond the SM. Indirect searches have the potential to reach mass/energy scales beyond those directly accessible by todays high-energy accelerators. The value of the weak charge of the proton Q_W^p is an example of such an indirect search, as it sets the strength of the protons interaction with particles via the well-predicted neutral electroweak force. Parity violation (invariance under spatial inversion (x,y,z) -> (-x,-y,-z)) is violated only in the weak interaction, thus providing a unique tool to isolate the weak interaction in order to measure the protons weak charge. Here we report Q_W^p=0.0719+-0.0045, as extracted from our measured parity-violating (PV) polarized electron-proton scattering asymmetry, A_ep=-226.5+-9.3 ppb. Our value of Q_W^p is in excellent agreement with the SM, and sets multi-TeV-scale constraints on any semi-leptonic PV physics not described within the SM.



rate research

Read More

126 - A. Gasparian , H. Gao , D. Dutta 2020
The PRad experiment has credibly demonstrated the advantages of the calorimetric method in e-p scattering experiments to measure the proton root-mean-square (RMS) charge radius with high accuracy. The PRad result, within its experimental uncertainties, is in agreement with the small radius measured in muonic hydrogen spectroscopy experiments and it was a critical input in the recent revision of the CODATA recommendation for the proton charge radius. Consequently, the PRad result is in direct conflict with all modern electron scattering experiments. Most importantly, it is 5.8% smaller than the value from the most precise electron scattering experiment to date, and this difference is about three standard deviations given the precision of the PRad experiment. As the first experiment of its kind, PRad did not reach the highest precision allowed by the calorimetric technique. Here we propose a new (and) upgraded experiment -- PRad-II, which will reduce the overall experimental uncertainties by a factor of 3.8 compared to PRad and address this as yet unsettled controversy in subatomic physics. In addition, PRad-II will be the first lepton scattering experiment to reach the Q^2 range of 10^{-5} GeV^2 allowing a more accurate and robust extraction of the proton charge radius. The muonic hydrogen result with its unprecedented precision (~0.05%) determines the CODATA value of the proton charge radius, hence, it is critical to evaluate possible systematic uncertainties of those experiments, such as the laser frequency calibration that was raised in recent review articles. The PRad-II experiment with its projected total uncertainty of 0.43% could demonstrate whether there is any systematic difference between $e-p$ scattering and muonic hydrogen results. PRad-II will establish a new precision frontier in electron scattering and open doors for future physics opportunities.
The Qweak experiment has measured the parity-violating asymmetry in polarized e-p elastic scattering at Q^2 = 0.025(GeV/c)^2, employing 145 microamps of 89% longitudinally polarized electrons on a 34.4cm long liquid hydrogen target at Jefferson Lab. The results of the experiments commissioning run are reported here, constituting approximately 4% of the data collected in the experiment. From these initial results the measured asymmetry is Aep = -279 +- 35 (statistics) +- 31 (systematics) ppb, which is the smallest and most precise asymmetry ever measured in polarized e-p scattering. The small Q^2 of this experiment has made possible the first determination of the weak charge of the proton, QpW, by incorporating earlier parity-violating electron scattering (PVES) data at higher Q^2 to constrain hadronic corrections. The value of QpW obtained in this way is QpW(PVES) = 0.064 +- 0.012, in good agreement with the Standard Model prediction of QpW(SM) = 0.0710 +- 0.0007. When this result is further combined with the Cs atomic parity violation (APV) measurement, significant constraints on the weak charges of the up and down quarks can also be extracted. That PVES+APV analysis reveals the neutrons weak charge to be QnW(PVES+APV) = -0.975 +- 0.010.
We report the results of a new Rosenbluth measurement of the proton form factors at Q^2 values of 2.64, 3.20 and 4.10 GeV^2. Cross sections were determined by detecting the recoiling proton in contrast to previous measurements in which the scattered electron was detected. At each Q^2, relative cross sections were determined to better than 1%. The measurement focussed on the extraction of G_E/G_M which was determined to 4-8% and found to approximate form factor scaling, i.e. mu_p G_E approx G_M. These results are consistent with and much more precise than previous Rosenbluth extractions. However, they are inconsistent with recent polarization transfer measurements of comparable precision, implying a systematic difference between the two techniques.
A new high precision measurement of the reaction pp -> pK+Lambda at a beam momentum of 2.95 GeV/c with more than 200,000 analyzed events allows a detailed analysis of differential observables and their inter-dependencies. Correlations of the angular distributions with momenta are examined. The invariant mass distributions are compared for different regions in the Dalitz plots. The cusp structure at the N Sigma threshold is described with the Flatte formalism and its variation in the Dalitz plot is analyzed.
139 - M. De Rydt , G. Neyens , K. Asahi 2009
he electric quadrupole coupling constant of the 31Al ground state is measured to be nu_Q = |eQV_{zz}/h| = 2196(21)kHz using two different beta-NMR (Nuclear Magnetic Resonance) techniques. For the first time, a direct comparison is made between the continuous rf technique and the adiabatic fast passage method. The obtained coupling constants of both methods are in excellent agreement with each other and a precise value for the quadrupole moment of 31Al has been deduced: |Q(31Al)| = 134.0(16) mb. Comparison of this value with large-scale shell-model calculations in the sd and sdpf valence spaces suggests that the 31Al ground state is dominated by normal sd-shell configurations with a possible small contribution of intruder states. The obtained value for |Q(31Al)| and a compilation of measured quadrupole moments of odd-Z even-N isotopes in comparison with shell-model calculations shows that the proton effective charge e_p=1.1 e provides a much better description of the nuclear properties in the sd-shell than the adopted value e_p=1.3 e.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا