Lasserre Integrality Gaps for Graph Spanners and Related Problems


Abstract in English

There has been significant recent progress on algorithms for approximating graph spanners, i.e., algorithms which approximate the best spanner for a given input graph. Essentially all of these algorithms use the same basic LP relaxation, so a variety of papers have studied the limitations of this approach and proved integrality gaps for this LP in a variety of settings. We extend these results by showing that even the strongest lift-and-project methods cannot help significantly, by proving polynomial integrality gaps even for $n^{Omega(epsilon)}$ levels of the Lasserre hierarchy, for both the directed and undirected spanner problems. We also extend these integrality gaps to related problems, notably Directed Steiner Network and Shallow-Light Steiner Network.

Download