No Arabic abstract
The quantum critical detector (QCD), recently introduced for weak-signal amplification [Opt. Express 27, 10482 (2019)], functions by exploiting high sensitivity near the phase transition point of first-order quantum phase transitions. We contrast the behavior of the first-order as well as the second-order quantum phase transitions (QPTs) in the detector. We find that the giant sensitivity to a weak input signal, which can be utilized for quantum amplification, only exists in first-order QPTs. We define two new magnetic order parameters to quantitatively characterize the first-order QPT of the interacting spins in the detector. We also introduce the Husimi $Q$-functions as a powerful tool to show the fundamental change in the ground-state wave function of the detector during the QPTs and especially, the intrinsic dynamical change within the detector during a quantum critical amplification. We explicitly show the high figures of merit of the QCD via the quantum gain and signal-to-quantum noise ratio. Specifically, we predict the existence of a universal first-order QPT in the interacting spin system resulting from two competing ferromagnetic orders. Our results motivate new designs of weak signal detectors by engineering first-order QPTs, which are of fundamental significance in the search for new particles, quantum metrology, and information science.
We introduce a first-order quantum-phase-transition model, which exhibits giant sensitivity $chi propto N^2$ at the critical point. Exploiting this effect, we propose a quantum critical detector (QCD) to amplify weak input signals. The time-dynamic QCD functions by triggering a first-order dynamical quantum phase transition in a system of spins with long-range interactions coupled to a bosonic mode. We numerically demonstrate features of the dynamical quantum phase transition, which leads to a time-dependent quantum gain. We also show the linear scaling with the spin number $N$ in both the quantum gain and the corresponding signal-to-quantum noise ratio of this QCD. Our QCD can be a resource for metrology, weak signal amplification, and single photon detection.
Continuously monitoring the environment of a quantum many-body system reduces the entropy of (purifies) the reduced density matrix of the system, conditional on the outcomes of the measurements. We show that, for mixed initial states, a balanced competition between measurements and entangling interactions within the system can result in a dynamical purification phase transition between (i) a phase that locally purifies at a constant system-size-independent rate, and (ii) a mixed phase where the purification time diverges exponentially in the system size. The residual entropy density in the mixed phase implies the existence of a quantum error-protected subspace where quantum information is reliably encoded against the future non-unitary evolution of the system. We show that these codes are of potential relevance to fault-tolerant quantum computation as they are often highly degenerate and satisfy optimal tradeoffs between encoded information densities and error thresholds. In spatially local models in 1+1 dimensions, this phase transition for mixed initial states occurs concurrently with a recently identified class of entanglement phase transitions for pure initial states. The mutual information of an initially completely-mixed state in 1+1 dimensions grows sublinearly in time due to the formation of the error protected subspace. The purification transition studied here also generalizes to systems with long-range interactions, where conventional notions of entanglement transitions have to be reformulated. Purification dynamics is likely a more robust probe of the transition in experiments, where imperfections generically reduce entanglement and drive the system towards mixed states. We describe the motivations for studying this novel class of non-equilibrium quantum dynamics in the context of advanced quantum computing platforms and fault-tolerant quantum computation.
Population annealing is a hybrid of sequential and Markov chain Monte Carlo methods geared towards the efficient parallel simulation of systems with complex free-energy landscapes. Systems with first-order phase transitions are among the problems in computational physics that are difficult to tackle with standard methods such as local-update simulations in the canonical ensemble, for example with the Metropolis algorithm. It is hence interesting to see whether such transitions can be more easily studied using population annealing. We report here our preliminary observations from population annealing runs for the two-dimensional Potts model with $q > 4$, where it undergoes a first-order transition.
Quantum coherences, correlations and collective effects can be harnessed to the advantage of quantum batteries. Here, we introduce a feasible structure engineering scheme that is applicable to spin-based open quantum batteries. Our scheme, which builds solely upon a modulation of spin energy gaps, allows engineered quantum batteries to exploit spin-spin correlations for mitigating environment-induced aging. As a result of this advantage, an engineered quantum battery can preserve relatively more energy as compared with its non-engineered counterpart over the course of the storage phase. Particularly, the excess in stored energy is independent of system size. This implies a scale-invariant passive protection strategy, which we demonstrate on an engineered quantum battery with staggered spin energy gaps. Our findings establish structure engineering as a useful route for advancing quantum batteries, and bring new perspectives on efficient quantum battery designs.
We apply quantum trajectory techniques to analyze a realistic set-up of a superconducting qubit coupled to a heat bath formed by a resistor, a system that yields explicit expressions of the relevant transition rates to be used in the analysis. We discuss the main characteristics of the jump trajectories and relate them to the expected outcomes (clicks) of a fluorescence measurement using the resistor as a nanocalorimeter. As the main practical outcome we present a model that predicts the time-domain response of a realistic calorimeter subject to single microwave photons, incorporating the intrinsic noise due to the fundamental thermal fluctuations of the absorber and finite bandwidth of a thermometer.